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 Transmembrane immunoglobulin and mucin 1 (Tim-1) belongs to a family of cell surface 

proteins with roles in immune regulation, among other functions.  Tim-1 polymorphisms have 

been implicated in human asthma susceptibility, and antibody modulation of Tim-1 has been 

shown to modulate murine models of autoimmune disease and allograft tolerance.  This ability of 

Tim-1 to influence disease progression has been attributed to its role in co-stimulating T cell 

function, inducing transcriptional activation, and skewing cytokine production. 

Despite the emerging role of Tim-1 in immune modulation, the molecular mechanisms 

underlying Tim-1 function remain largely unidentified.  We and others have demonstrated that 

Tim-1 is a co-stimulatory molecule with the ability to enhance transcriptional activation.  

However, it is unknown where Tim-1 localizes upon T cell activation, an avenue of investigation 

that has yielded important insights about other molecules involved in T cell activation.  Using 

imaging, I demonstrate that in contrast to most co-stimulatory molecules, murine Tim-1 localizes 

away from the immunological synapse, and towards the distal pole complex in manner 

dependent on ezrin/radixin/moesin (ERM) family proteins.  This localization is important for 

Tim-1 enhancement of cytokine production.  In addition, a variety of molecular, 

pharmacological, and biochemical methods were used to examine the molecules and pathways 

induced downstream of Tim-1 activation.  In particular, I discovered that Tim-1 can trigger 

NFAT/AP-1 activation in a PLC-γ1 independent, but TCR- and CD28-dependent, manner.  
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Overall, this dissertation reveals some of the complexity underlying Tim-1 function.  

Better understanding of where and how Tim-1 interacts with other molecules will provide greater 

insight into Tim-1 mediated T cell activation and disease modulation.    
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1.0  INTRODUCTION 

1.1 TIM FAMILY OF PROTEINS 

The Tim family of proteins consists of eight putative murine members with three known human 

orthologs.  Although originally described as “T cell” immunoglobulin and mucin (Tim), a more 

accurate description is “transmembrane” immunoglobulin and mucin, since Tim family members 

have been found expressed on multiple immune cell types.  All members of the Tim family have 

similar structural domains, starting with an N-terminal IgV domain with four conserved 

cysteines, a heavily glycosylated mucin domain, a single transmembrane stalk, and a cytoplasmic 

tail with conserved tyrosines (except for Tim-4).  Murine Tim-1, Tim-3, and Tim-4 are 

orthologous to human TIM-1, TIM-2, and TIM-4.  While the IgV domains of Tim family 

proteins are fairly well conserved (40% between different homologs), the mucin domains are 

dramatically different (1).  

Tim-1 is a heavily glycosylated member of the Tim family.  Although Tim-1 was initially 

described as being expressed predominantly on activated Th2 cells, expression and functions for 

Tim-1 have been identified on multiple other immune cells.  Initial work described Tim-1 protein 

expression on activated Th2 cells within twelve hours of activation (and possibly even sooner) 

(2).  However, Tim-1 is found on all activated T cells, as well as many other immune cells that 

will be described further.  Tim-1 is considered to be a positive regulator of T cell responses, and 
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cross-linking the protein with specific antibodies can influence T cell proliferation and cytokine 

production both in vitro and in vivo.  

Tim-2 is the most closely related family member to Tim-1 and was previously thought to 

be an ortholog of hTIM-1.  Although low levels of Tim-2 are found on naïve and activated CD4+ 

and CD8+ cells, Tim-2 is preferentially expressed on T helper 2 cells that have undergone three 

rounds of polarization.  However, despite their structural similarities, Tim-2 is expressed and 

functions differently from Tim-1.  Thus, unlike Tim-1, Tim-2 is not found on B cells, 

macrophages, or dendritic cells. Tim2-Ig treatment resulted in delayed disease onset and milder 

symptoms in mice with experimental autoimmune encephalomyelitis (EAE).  Furthermore, in 

vitro stimulation of splenic cells treated with Tim2-Ig resulted in enhanced Th2 cytokine 

production (IL-4, IL-10) as well as hyperproliferation.  This suggest that blocking the Tim-

2/Tim-2L interaction with Tim2-Ig can enhance Th2 responses, suggesting that Tim-2 is a 

negative regulator of Th2 T cell responses. (3) 

Tim-3 is the third member of the Tim family and was discovered on the surface of 

terminally differentiated Th1, but not Th2, cells during a screen for Th1-specific markers.  Since 

its initial discovery, Tim-3 has also been found on the surface of CD8+, Th17 and regulatory T 

cells as well as monocytes, dendritic cells, and mast cells (4-8).  While many studies support a 

model of Tim-3 as a negative regulator of T cell function, signaling work with ectopic Tim-3 

overexpression supports a role for Tim-3 as a positive regulator of T cell signaling, at least in 

acute situations.  Of interest, TCR and CD28 stimulation in the presence of Tim-3 enhances both 

NFAT/AP-1 and NF-κB dependent transcription.  Furthermore, other molecules involved in T 

cell activation, including Fyn, pPLCγ1, pZap-70, p85 subunit of PI3K, have all been implicated 

in Tim-3 signaling (9).  Recent work has implicated a role for Tim-3 in a variety of chronic viral 



 3 

infections, including HIV and HCV, more specifically that Tim-3 is upregulated on exhausted T 

cells (10, 11). While treatment with certain Tim-3 antibodies can reverse the function of 

exhausted T cells, the precise function of Tim-3 in the acquisition or maintenance of an 

exhausted phenotype is not clear at this point.  

Tim-4 is found on antigen presenting cells (APCs) and is best known as a receptor for 

both Tim-1 and phosphatidylserine (PS).  Tim-4 expression appears to be relatively restricted to 

immune organs, since mRNA levels are highest in spleen and lymph nodes, which is consistent 

with its expression on antigen presenting cells (CD11b+ and CD11c+) (12, 13).  In particular, 

Tim-4 is most highly expressed on mature dendritic cells that are double positive for CD8 and 

CD11c (12).  Tim-4 binding to Tim-1 appears to require both the IgV and mucin domains of 

Tim-1(12) although it has been suggested that the Tim-1:Tim-4 interaction is mediated by their 

common ligand PS rather than as the result of a direct interaction (14).  Stimulation with either 

Tim-4 Ig or Tim4-expressing CHO cells enhances T cell proliferation and cytokine production, 

which can be partially inhibited by Tim-4 specific antibodies.  Tim-4 Ig appears to co-stimulate 

T cell proliferation even under conditions of suboptimal CD3 and CD28 activation (13). This 

enhanced T cell proliferation is due to the ability of Tim-4 to both increase the rate of cell 

division as well as to upregulate anti-apoptotic factors, including Bcl-2 (13).  Intriguingly, Tim-4 

treatment can inhibit proliferation of naïve T cells, which do not express detectable Tim-1 

protein, suggesting that Tim-4 may have still-unidentified receptor(s) (15).    

 Recently, Tim-4 has received much attention due to its identification as a receptor for 

PS, which is exposed on the surface of cells early during the apoptotic program.  The Tim-4 

cytoplasmic tail does not appear to be important for signaling downstream of PS, but a recent 

paper indicates that the cytoplasmic tail is necessary for proper Tim-4 localization relative to 
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PS(16).  The ability of Tim-4 to phagocytose apoptotic cells may be important for the prevention 

of autoimmunity.  Peritoneal macrophages and B cells lacking Tim-4 cannot efficiently engulf 

apoptotic cells, and Tim-4 knockout mice have hyperactive T and B cells with a propensity to 

develop antibodies to double-stranded DNA(17).  Thus, the ability to clear apoptotic cells by 

Tim-4 appears to be important for normal immune function and the prevention of autoimmunity. 

1.2 TIM-1 AND DISEASE 

1.2.1 Tim-1 and Disease Overview 

Transmembrane immunoglobulin and mucin 1 (Tim-1), a co-stimulatory protein found on the 

surface of T cells, has been implicated in the regulation of a variety of immune conditions.  Tim-

1 was first identified as a Hepatitis A Virus Cellular Receptor (HAVCR1)(18).  Tim-1 is also 

known as Kim-1 (kidney injury molecule), which serves as an early marker of renal 

injury/failure (19, 20).  Interest in the field of immunology about this molecule built over the past 

decade with its discovery as a putative asthma susceptibility gene (21).  However, ever 

increasing numbers of pathologic and physiologic effects have been linked to Tim-1, including 

atopic disease, rheumatoid arthritis, and systemic lupus erythmatosus (22-25) (26).   This section 

will summarize the role of Tim-1 in asthma, multiple sclerosis, and transplantation.  Truly 

understanding the function of Tim-1 in immune activation will require greater insight into Tim-1 

localization, signaling, and impact on multiple immune cell types. 
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1.2.2 Tim-1 and asthma 

Asthma is a multifactorial disease with both genetic and environmental components.  Due to the 

complex interplay of factors contributing to disease, discovery of asthma susceptibility genes has 

been challenging.  Thus, using a reductionist approach, a group used a genetically tractable 

mouse model to better study the genes underlying asthma susceptibility.  It has long been known 

that BALB/c mice have higher Th2 responses and are more susceptible to allergic airway 

hyperreactivity (AHR) than C57Bl/6 or DBA/2 mice. In 2001 the Dekruyff and Umetsu groups 

identified a region on mouse chromosome 11B.1 as conferring susceptibility to asthma.  The 

authors obtained congenic mice with specific segments of DBA/2 on a BALB/c background, to 

identify one line of mice with reduced Th2 responses.  These mice have a segment of DBA/2 

chromosome 11, which the investigators referred to as Tapr (T cell airway phenotype regulator).  

This region was found to be homologous to 5q33.2 and to be separate and distinct from the locus 

containing IL-4.  Positional cloning revealed the Tim-1 and Tim-3 genes were present within the 

Tapr region.  Comparison of the mouse genes revealed polymorphisms between Tim-1 in DBA/2 

and BALB/c mice.  Specifically, a 15 aa insertion exists in the BALB/c mucin domain but not 

the DBA/2 (or C57Bl/6) or congenic mice (27).  Further, by co-culturing CD4+ T cells and DCs 

from BALB/c and HBA, the authors suggested that Tim-1 on T cells were most important for the 

increased Th2 response of BALB/c mice (27). 

Tim-1 is a very intriguing candidate gene with regard to asthma susceptibility because it 

is the first specific example of a gene that might link genetics and environment, providing a 

possible mechanism for the so-called “hygiene hypothesis.”  Over the past few decades, 

industrialized countries have witnessed a dramatic increase in incidence of asthma.  Many have 

attributed the increased industrialization with similar increases in sanitation and subsequent 
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decreases in infectious disease.  Thus, the hygiene hypothesis postulates that lack of exposure to 

certain infectious diseases during childhood, leads to an increase in inappropriate responses to 

typically benign allergens in certain genetically predisposed individuals, eventually leading to 

asthma and other atopic diseases in some people.  HAV exposure is one of the infectious agents 

that has been inversely correlated with development of atopic asthma (28).  Intriguingly, two 

years after the identification of Tim-1 as a putative asthma susceptibility gene, a fascinating 

study emerged inversely correlating a TIM-1 polymorphism with susceptibility to asthma, but 

only if the patient was seropositive for HAV.  Specifically, patients with a six amino acid 

insertion in the TIM-1 mucin domain, and HAV sero-positivity, were protected from asthma 

(21). Subsequently, a Korean cohort study suggested a correlation between TIM1 genotype and 

asthma, whereas some but not all studies with Chinese populations failed to find such an 

association (22, 29, 30).  Any genetic association of TIM-1 genotype with asthma may be 

complex and dependent on both the specific polymorphism as well as on genetic background.  

Interestingly, the same six amino acid insertion also correlates with increased severity of HAV 

induced liver failure, possibly due to increased NKT activity in the longer forms of TIM-1(31).  

Thus, it has been suggested that in order to protect from this acute HAV liver damage, 

evolutionarily, the shorter form of TIM-1 has been conserved, which has the side effect of 

predisposing people to asthma and allergy.  

These exciting findings have lead to a plethora of mouse and human studies, which 

mostly support a role for Tim-1 in asthma pathogenesis.  Initial studies on Tim-1 and asthma 

focused on its role on T cells.  Depending upon the specific Tim-1 antibody utilized as well as 

differences in specific animal models, modulation of Tim-1 can lead to either 

amelioration/prevention or aggravation of AHR.  Many of these studies noted an increase in 
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Tim-1 expression during asthma development.  For example, Tim-1 mRNA levels were shown to 

be increased in mice with AHR (32).  Another study reported higher Tim-1 levels from activated 

T cells in lung draining lymph nodes (33).  Further, the augmented Tim-1 expression was 

correlated with high levels of the transcription factor GATA3, the master gene regulator of Th2 

development (32).  

Various groups have generated different Tim1-specific antibodies to probe the effects of 

Tim-1 in immune modulation.  In fact, one study suggested that Tim-1 might function as either a 

positive or negative co-stimulatory molecule, depending on the nature of its ligation (34).  An 

initial in vivo study suggested that treatment with an anti-Tim-1 antibody before intranasal 

antigen challenge resulted in altered cytokine production (more IFN-γ and IL-10, but less IL-4) 

as compared to non-tolerized mice. Further, administration of anti-Tim-1 antibody during initial 

exposure to antigen prevented tolerance induction.  As a result, subsequent antigen challenge of 

anti-Tim-1 treated mice led to AHR (2).  However, not all Tim-1 antibodies modulate AHR 

similarly.  Treatment with another anti-Tim-1 antibody ameliorated disease, with an 

accompanying decrease in cytokine production (35).  Studies with other anti-Tim-1 antibodies 

revealed an ability to either augment or inhibit cell proliferation, cytokine production, and 

ultimately AHR (36).  Further evidence for potential TIM-1 modulation of asthma in humans 

was demonstrated in a study using anti-human TIM-1 antibodies to decrease AHR in SCID mice 

adoptively transferred with peripheral blood mononuclear cells (PBMCs) from allergic/asthmatic 

patients (37).  
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1.2.3 Tim-1 and MS/EAE 

Another autoimmune disease that TIM-1 may modulate is multiple sclerosis (MS), an immune-

mediated demyelinating disease of the central nervous system.  The first study to examine TIM-1 

in MS found increased levels of TIM-1 mRNA in the mononuclear cells from the cerebral spinal 

fluid of MS patients with clinically inactive disease.  Interestingly, levels of TIM-1 were 

inversely correlated to IFN-γ levels.  Thus, high TIM-1 expression was correlated with low 

levels of IFN-γ, indicating that TIM-1 levels might be associated with regulating the different 

phases of MS (38).  Despite this finding, an epidemiologic study from Western Austria did not 

demonstrate an association between TIM-1 SNPs and MS.  This group discovered ten SNPs in 

the TIM-1 gene.  However, the authors were unable to correlate any of these SNPs with MS (39).  

The difference between these studies could be due to many factors, including the populations 

studied and limited number of patients (n=272).  Thus, the original study was conducted in 

Sweden (probably with Swedish patients) while the subjects in the second study were from West 

Austria.  It is likely that more patients would be required to uncover possibly subtle effects of 

these TIM-1 SNPs on MS. 

Animal studies of experimental autoimmune encephalomyelitis (EAE), a mouse model 

for MS, support a role for Tim-1 in the pathogenesis of MS.  Anti-Tim-1 antibody treatment of 

SJL mice immunized with PLP139-151 altered cytokine production and disease progression.  

Treatment with a high affinity anti-Tim-1 antibody resulted in an immune response skewed more 

towards Th1 and Th17, and disease exacerbation, while injection with a lower affinity anti-Tim-

1 antibody resulted in a predominantly Th2 response with amelioration of disease symptoms 

(34).  This was believed to be a T helper-mediated effect.  However, further work by the same 
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group attributed the exacerbation of EAE by the high affinity Tim-1 antibody to effects on 

dendritic cells (DC) (40).  Whether the effects of Tim-1 antibodies on immune responses are due 

to direct effects on T cells, or to indirect effects on APCs, will require further mechanistic insight 

into how these antibodies function on various cell types.  

1.2.4 Tim-1 and immune modulation in transplantation  

Tim-1 also has been shown to modulate immune responses associated with rejection of - or 

tolerance to - allografts.  Taking advantage of different Tim-1 antibodies, two studies 

demonstrated that Tim-1 engagement on helper T cells can promote allograft acceptance or 

rejection, and that the effects are dependent on regulatory T cells.  In vitro T cell stimulation 

with an “agonistic” (high affinity) Tim-1 Ab increased the number of IL-17- and IFN-γ-

producing cells, but decreased the mRNA expression of FoxP3, GITR, and other markers of 

regulatory T cells (41).  This same Tim-1 antibody also negated the protective effects of anti-

CD154 (CD40L) treatment and resulted in allograft rejection. In contrast, an “antagonistic” (low 

affinity) anti-Tim-1 Ab was able to inhibit the Th1 cytokine IFN-γ and to promote Th2 

cytokines, such as IL-5 (42). Thus, antagonist Tim-1 antibody treatment appeared to prevent 

chronic allograft rejection by a mechanism dependent on regulatory T cells. Interestingly, 

antagonistic anti-Tim-1 antibody treatment did not convert naïve CD4+ T cells into regulatory T 

cells, but rather appeared to inhibit the proliferation of allogeneic effector T cells. The 

mechanisms underlying the effects of Tim-1 antibodies on regulatory T cells (e.g. whether they 

cause expansion of existing Treg or conversion of new Treg) still remain to be discovered. 

Aside from helper T cells, Tim-1 could be modulating transplant tolerance through CD8+ 

and B cells.   Treatment with a low affinity Tim-1 antibody, RMT1-10, prolonged allograft 
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survival, potentially by abrogating CD8+ T cell production of IL-17 (43).  In addition, Tim-1 has 

been found on a subset of regulatory B cells, and treatment with RMT1-10 in the presence of B 

cells promoted a Th2 phenotype with long-term graft survival (44).   

Tim-1 modulates immune responses to AHR, EAE, and transplantation tolerance.  While 

treatment with different affinity antibodies alters cytokine production and disease progression, 

we do not yet understand how this occurs.  Better understanding of how these Tim-1 antibodies 

are mediating their effects may lead to better targeted approaches to modulate diseases states.  

One possibility is that Tim-1 is generating different signaling pathways downstream of its 

ligation, and we will examine this in Chapter 3.  
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Table 1-1: Effect of select Tim-1 antibodies on disease modification 

Disease 
Model  

Antibody  Effect  Ref  

Asthma     

 222414 (R&D)  Decreased Th2  Journal of Allergy and Clinical 
Immunology, 2005, 116 (6)  

 1H8.2  IL-4, IL-5, IL-10, IL-13 
production  

The Journal of Immunology, 
2007, 178: 2249-2261  

 4A2.2  Decreased IL-4, IL-10, IL-13, 
reduction lung inflammation  

The Journal of Immunology, 
2007, 178: 2249-2261  

Influenza 222414, RMT1-
4, Am1-005  

IFN-γ  Clin Exp Immunol. 2006 July; 
145(1): 123–129  

EAE  3B3  IFN-γ and IL-17, exacerbation  J Exp Med. 2007 July 9; 
204(7): 1691–1702 

 RMT1-10  IL-4 and IL-10, amelioration  J Exp Med. 2007 July 9; 
204(7): 1691–1702 

Islet 
Allograft  

3B3  IFN-γ and IL-17  J. Clin. Invest. 118(2): 735-741 
(2008)  

Cardiac 
Allograft  

RMT1-10  IL-4 J Clin Invest. 2008 February 1; 
118(2): 742–751  

 

1.3 TIM-1 STRUCTURE 

Solving the crystal structure of the Tim-1 IgV domain has led to interesting insights into this 

protein’s function.  The IgV domains of Tim-1 is composed of two anti-parallel β sheets (BED 
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and GFC) with an unusually high number of conserved cysteine residues.  Furthermore, this 

structural analysis identified a possible Tim-1 homotypic (and possible Tim-1:Tim-2 heterotypic) 

interaction by Tim-1 expressed on adjacent cells. Two residues, His 64 and Glu 67, of the TIM-1 

DE loop are thought to be important for this trans-Tim-1 binding, since a point mutation of 

histidine at position 64 to glutamic acid led to significant reductions in homophilic Tim-1:Tim-1 

binding as well as partially decreased levels of Tim-1:Tim-4 binding (45). This could be of 

potential biologic relevance because the homophilic binding is conserved in humans.  It was 

suggested that this Tim-1:Tim-1 homotypic interaction may play a role in the Tim-1 co-

stimulatory function, and this will be examined in more detail in Chapter 2 of the thesis. 

One highly conserved region between Tim-1 and Tim-4, but not Tim-2, is the folding of a 

CC’ loop into the GFC β sheet. The Tim-1 and Tim-4 IgV domain crystal structures suggest that 

a metal-ion-dependent ligand binding cavity built by CC’ and FG loops in the IgV domain is 

responsible for the recognition of PS.  This loop creates a protected cleft for acidic compounds to 

enter. The hydrophilic phosphate head of PS can enter the cavity and interact with a metal ion, 

while the fatty acid tail interacts with the aromatic residues of the FG loop.  Mutations of 

residues in the metal ion binding site also appear to increase localization of Tim-1 to the cell 

surface.  Single mutations of the metal ion residues decreased Tim-1 and Tim-4 binding to 

liposomes containing PS, while a double mutation completely abolished PS binding. Individual 

mutations of the four amino acids of the CC’ and FG loops dramatically decreased the ability of 

Tim-4 to mediate uptake of apoptotic red blood cells (45, 46). The consequences of Tim-1 and 

PS interaction in T cells will be further examined in Chapter 3. 
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1.4 TIM-1 LIGANDS 

1.4.1 Tim-1 family ligands-overview 

Multiple ligands for Tim-1 have been identified, and there is indirect evidence for additional as-

yet-unidentified ligand(s).  The first ligand described was HAV, and recently Tim-1 has also 

been shown to serve as a cellular receptor for other viruses, including Ebola and Marburg (18, 

47).  Tim-1 has also been shown to bind to the related family member Tim-4 (though some 

believe that this interaction is mediated by PS, as discussed above) and to form homotypic 

interactions (12, 45).  Other ligands for Tim-1 include IgA (48), phosphatidylserine (49, 50), and 

the transmembrane protein LMIR5/CD300b (50).  In this section, the various Tim-1 ligands and 

their effects on Tim-1 mediated function will be described in greater detail. 

1.4.2 Tim-1 as a receptor for viruses 

Primate (including human) TIM-1 serves as a cellular receptor for the Hepatitis A virus (HAV) 

(18, 51, 52), and many studies indicate that the interaction between HAV and different alleles of 

Tim-1 has the potential to impact asthma susceptibility. Sero-positivity for HAV and a six amino 

acid insertion in the Tim-1 mucin domain are associated with relative protection from asthma 

(21).  Interestingly, while HAV binds to just the IgV domain of Tim-1 (45), uncoating of HAV 

requires the mucin domain of Tim-1 (53).  

Tim-1 has been shown to influence viral infection.  An early study with anti-Tim-1 

antibodies suggested that Tim-1 might serve as an adjuvant to boost immunity during influenza 

vaccination.  Specifically, treatment with anti-Tim-1 antibodies augmented antigen-specific 
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proliferation and IFN-γ production (54).  However, Tim-1 may also have a more direct role in 

influencing viral infection.  Recently, Tim-1 has also been identified as a cellular receptor for 

Zaire Ebolavirus and Lake Victoria Marburg virus.  Expression of Tim-1 enhances the ability of 

ebolavirus glycoproteins to infect these cells.  Also, since Ebola transmission is mostly through 

the aerosol route, Tim-1 expression in eye and airway epithelium provides a putative route of 

entry for these viruses.  Finally pretreatment with a Tim-1 IgV-binding antibody, ARD5, 

prevented Ebola and Marburg virus infection (47).  Due to the growing number of viruses being 

identified as Tim-1 ligands, understanding the mechanism(s) underlying Tim-1 activation may 

prove to be useful in identifying signaling pathways to modulate viral infection itself or to 

manipulate the immune response to viral infection. 

 

1.4.3 Tim family members - Tim-4 and Tim-1 

Tim-1 is able to bind two TIM family members. Interaction of Tim-1 with Tim-4, which is found 

on mature antigen presenting cells (APC), induces T cell proliferation, Tim-1 phosphorylation, 

and activation of downstream signaling pathways (12, 13). Thus, Tim-4 appears to increase 

activation of T cells and may also augment the strength and direction of a T helper response (12, 

13).  Some studies have suggested that the Tim-1:Tim-4 interaction is not direct but rather 

mediated by PS (55). However, this has yet to be definitively proven or ruled out.  

Tim-1 has also been suggested to bind to itself in a homotypic fashion, in trans, i.e. with 

Tim-1 expressed by another cell (or in the case of treatment of cells with Tim1-Ig).  This appears 

to be mediated by two residues (H64 and Glu67) and the BED loop, within the IgV domain, 

since a point mutation of H64E mitigated the homotypic Tim-1 interaction (45).  Since the 
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impact of Tim-1 homotypic interactions on T cell function has not been determined, we were 

interested in investigating this, as described in Chapter 3. 

1.4.4 Other Tim-1 ligands - IgA, LMIR5/CD300b, PS 

Additional Tim-1 ligands have recently been discovered.  In a search of more putative Tim-1 

ligands, one group used an expression cloning screen with human lymph node cDNA to identify 

that IgA binds Tim-1 Ig.  These investigators then demonstrated that although IgA binding to 

Tim-1 does not affect HAV binding, the presence of IgA enhances HAV neutralization (48).  

Another group, using retrovirus mediated expression cloning into Ba/F3 cells with an A20 cDNA 

library found that Tim-1 can bind to leukocyte mono-immunoglobulin-like receptor 5 

(LMIR5)/CD300b. This interaction appears to occur near the PS-binding site on Tim-1.  In 

addition, this group reported that  Tim-1 expressed in the kidney (aka Kim-1) may interact with 

myeloid cells expressing LMIR5 and influence disease outcome (48).  Thus, in a model of acute 

kidney injury, LMIR5 deficient mice had less kidney injury, possibly due to decreased neutrophil 

recruitment, despite normal levels of Tim-1 (50).  While the LMIR5:Tim-1 interaction has not 

yet been demonstrated to modulate T cell function, the interaction can induce Erk 

phosphorylation and IL-6 production in mast cells (50).  Thus, the novel ligands IgA and LMIR5 

have potentially interesting but apparently disparate effects on Tim-1 mediated signaling.   

One of the most intriguing Tim-1 ligands is phosphatidylserine (PS), which binds the IgV 

domain of Tim-1(46, 49, 56). On kidney epithelial cells, Tim-1 serves as a PS receptor and is 

involved in the phagocytosis and clearing of apoptotic cells (57).  In addition, transfection of 

Tim-1 into the fibroblast –like NIH 3T3 cell line allows these cells to efficiently take up PS 

expressing cells (56).  However, the Tim-1:PS interaction does not necessarily result in 
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phagocytosis of PS-expressing cells.  For example, an association between PS and Tim1-

expressing iNKT cells has been demonstrated to enhance cellular proliferation in a co-

stimulation (anti-CD3) dependent manner.  Furthermore, in mice, administration of anti-Fas 

antibody leads to increased airway hyperreactivity, which is dependent on Tim-1 and cytokine 

production (58).  Unlike the role of the Tim-1:PS interaction in fibroblasts for engulfment of 

apoptotic cells, exposure to PS on immune cells, specifically iNKT cells, causes Tim-1 to work 

in costimulatory manner and augment immune function.  However, not all ligands for PS boost 

immune function.  For instance, CD300a expressed by mast cells also binds PS, which does not 

result in phagocytosis, but rather induces inhibitory signaling, in part by recruiting the 

phosphatase SHP-1 (59).  In a mouse model of sepsis that releases apoptotic cells, CD300a-

deficient mast cells recruited more neutrophils and enhanced bacterial clearance (60).  Antibody 

blockade of the CD300a and PS interaction also prolongs survival, which suggests that the 

PS:CD300a interaction inhibits chemokine and cyokine production (60).  While one of the better 

known roles for PS receptors is their ability to bind and phagocytose apoptotic cells, this is 

clearly not their only function.  Tim-1 expression in epithelial cells has been shown to enable 

them to transform and engulf PS expressing cells and mediate immune function, but Tim-1 

expression on other immune cells, like iNKT cells, does not result in phagocytosis of apoptotic 

cells but rather activation of the cells.  Moreover, other PS receptors, such as CD300a, have been 

shown to inhibit immune responses. Thus, the functional outcome of PS:receptor interactions 

may depend on cell-specific and/or receptor-specific properties.  The role of PS:Tim-1 binding in 

T cells has not been studied.  Since Tim-1 has been suggested to be either a positive or negative 

regulator of T cell function, depending on the binding affinity of the particular antibodies used to 

modulate it (34), the ultimate effect of the Tim-1:PS interaction on T cell activation remains an 
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interesting and unanswered question.  Thus, we will explore the localization of Tim-1 in relation 

to PS in Chapter 3 and the impact of the Tim-1:PS interaction on T cell signaling in Chapter 3. 

1.5 TIM-1 ANTIBODIES 

Tim-1 is a type I transmembrane protein composed of an IgV head, heavily glycosylated mucin 

domain, a transmembrane domain, and an intracellular cytoplasmic tail with a conserved tyrosine 

(1). Much of the work elucidating Tim-1’s role in T cell activation and differentiation has been 

conducted using anti-Tim-1 antibodies.  The best studied anti-Tim-1 antibody is the high avidity 

3B3 generated by the Dekruyff/Umetsu group (2).  This antibody has been used to investigate in 

vitro and in vivo effects on multiple cells of the immune system, including T cells. 

Administration of 3B3 appears to aggravate AHR and EAE as well as to accelerate islet cell 

transplant rejection.  Many of these effects appear to be mediated through enhanced production 

of pro-inflammatory cytokines.  However, the cytokines produced in these different disease 

models differ.  For instance, in the AHR model, IL-4 production was enhanced, while 3B3 

treatment in the EAE model resulted in greater IFN-γ and IL-17 production (2, 34). Conversely, 

another anti-Tim-1 antibody, RMT1-10, ameliorated EAE disease progression, possibly by 

skewing the immune response towards a more Th2 phenotype, with IL-4 production (34).  

Interestingly, while both 3B3 and RMT1-10 bind similar epitopes in the IgV domain of Tim-1, 

they have different binding affinities and have different effects on cytoskeletal movement.  Thus, 

3B3 has a higher affinity for Tim-1, causes co-capping with CD3, and significant cytoskeletal 

rearrangement.  In contrast, RMT1-10 has a much lower binding affinity for Tim-1 and does not 

cause cytoskeletal-directed cellular movement (34).  One hypothesis is that the affinity of a 
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particular antibody for Tim-1 might result in different effects on Tim-1 movement or generate 

different signals downstream of Tim-1 ligation.  However, there is as yet no evidence to support 

this concept.  Thus, in Chapter 3 we will investigate whether ligation with various Tim-1 

antibodies results in changes in tyrosine phosphorylation downstream of TCR/CD28 co-

stimulation.  

While it might be tempting to attribute the various Tim-1 antibody effects solely to 

differing affinity, the full story is not so simple.  Another study utilizing different anti-Tim-1 

antibodies in the same AHR model demonstrates either enhanced or reduced Th2 type cytokine 

responses.  The difference in disease progression and cytokine production in this case was 

attributed to differences in the epitope that the antibodies bind to (36).  Anti-Tim-1 antibodies 

binding to the stalk and IgV domains appeared to ameliorate disease by inhibiting lung 

inflammation and reduced production of Th2 cytokines.  Conversely, another antibody that binds 

near an N-linked glycosylation site on the Tim-1 stalk exacerbated disease and increased Th2 

cytokine production.  In this study the authors did not examine the affinity of antibody binding, 

but rather attributed the differences in cytokine production to differences in the epitopes bound 

by the various antibodies.  Certainly this cannot be the case for all anti-Tim-1 antibodies, since 

3B3 and RMT1-10 appear to bind identical or similar epitopes within the IgV domain.  The 

ultimate effect of Tim-1 antibodies on disease pathogenesis and cellular cytokine production 

appears to be dependent on a combination of factors, including the specific epitope bound and 

the affinity (as well as subsequent cytoskeletal movement).  Further work will need to be 

conducted in order to clarify the mechanism underlying these differences in effects of Tim-1 

ligation by antibodies.   

Many additional anti-Tim-1 antibodies have been generated but not fully tested.  
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Collaborators from the Kuchroo lab have generously donated antibodies including 5F12, 4F12 

and 5G5.  Agonistic mouse anti-Tim-1 antibodies include 5F12 and the well-studied 3B3, which 

bind the IgV domain.  Antagonistic anti-Tim-1 antibodies include RMT1-10, which binds the 

IgV domain, and 5G5, which binds the mucin domain.  A previous study indicated that induction 

or abrogation of respiratory tolerance may depend on the epitope recognized by the anti-Tim-1 

antibody but did not provide a mechanism for these disparate actions (36).  Thus, we 

hypothesize that the agonistic and antagonistic Tim-1 antibodies lead to the recruitment and 

phosphorylation of different downstream targets to modify cytokine production and modulate T 

helper subset differentiation.    

Table 1-2:  Tim-1 antibody properties 

Antibody Binding to Tim-1 Properties 

3B3 IgV domain “Agonistic,” high 
affinity 

RMT1-10 IgV domain “Antagonistic,” lower 
affinity 

5F12 IgV domain Similar to 3B3 in 
function 

5G5 Mucin unknown 

4F12 Unknown unknown 

1.6 TIM-1 FUNCTION IN T CELLS 

1.6.1 T cell Activation  

T cell activation and polarization involves three signals.  The first signal is delivered when the T 

cell receptor (TCR) recognizes peptide presented in the cognate major histocompatibility 
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complex (MHC), resulting in signaling through CD3/zeta.  A second, co-stimulatory, signal 

augments T cell activation. For naïve T cells, this is usually provided by CD28 binding to its 

ligands CD80/CD86.  Classical co-stimulatory molecules like CD28 are distinguished by the fact 

that their ligation alone does not result in T cell activation. Cytokines provide a third signal to 

direct T cell expansion and, eventually, polarization.  Tim-1 is not a classical “co-stimulatory” 

molecule, since recent work suggests that Tim-1 can substitute for the initial signal or deliver 

either a positive or negative co-stimulatory signal (33, 34, 61).  Furthermore, treatment with 

different Tim-1 monoclonal antibodies leads to the production of different cytokines and 

enhancement of specific subsets of T helper cells, which results in exacerbation or protection 

from disease in mouse models (2, 34, 41, 42, 54). 

Initial studies implicated Tim-1 predominantly in modulating the Th2 response, 

particularly in regards to asthma (2, 32, 33, 35).  However, emerging studies suggest that Tim-1 

engagement can regulate multiple T helper subsets.  Xiao et al. first demonstrated that treatment 

with an agonistic anti-Tim-1 antibody increases severity of experimental autoimmune 

encephalomyelitis (EAE) possibly by increasing the secretion of IFN-γ and IL-17.  In contrast, 

the antagonistic anti-Tim-1 antibody ameliorates EAE and skews the immune response towards a 

Th2 phenotype (34).  Work in allograft immunity revealed that mice treated with an agonistic 

anti-Tim-1 antibody rapidly rejected pancreatic islet allografts and have a Th1 and Th17 

phenotype with reduction of regulatory T cells (41).  In contrast, an antagonistic anti-Tim-1 

antibody promoted cardiac transplant survival and skewed the immune response towards a Th2 

phenotype with limitation of alloreactive T effector cell expansion (42).  Determining the 

mechanisms by which Tim-1 ligation and antibody treatment influence T cell activation and 
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differentiation may provide valuable insight into T cell activation and lead to targeted 

therapeutics to promote tolerance or immunity.  

1.6.2 Tim-1 and signaling/Tim-1 as a costimulatory molecule  

Discovery of the TCR/CD3 complex eventually led to an enhanced understanding of the 

signaling molecules and pathways involved in T cell activation.  It is now appreciated that Src 

family kinase (SFK) members Lck and Fyn, phosphorylate tyrosines on the CD3/zeta 

cytoplasmic tails.  This allows for recruitment of ZAP-70 and the subsequent phosphorylation of 

adaptor proteins, such as SLP-76 and LAT, which serve as scaffolds for further signaling.  In 

particular, activation of PLC-γ1 following its phosphorylation by ZAP-70 and Itk generates DAG 

and IP3, which lead to MAP kinase activation and Ca2+ release, respectively (62).  Much of the 

work uncovering these pathways has come from studying the human Jurkat leukemic T cell line, 

which will be used extensively our experiments.   

Tim-1 has a conserved tyrosine in its cytoplasmic tail, and can function in a co-

stimulatory manner with CD3 and CD28.  In addition, both human and mouse Tim-1 have been 

suggested to physically interact with CD3 and ZAP-70 and Itk (34, 63).  Thus, it is reasonable to 

hypothesize that shared proximal TCR signaling molecules phosphorylate the Tim-1 cytoplasmic 

tail.  Although work from our lab has already demonstrated that Tim-1 activation of NFAT/AP-1 

is dependent on phosphorylation of Y276 within Tim-1, the kinase(s) responsible for Y276 

phosphorylation has not been completely elucidated.  Src family kinase (SFK) member(s) may 

be responsible for this phosphorylation, since a SFK inhibitor blocks Tim-1 phosphorylation 

(64). Furthermore, subsequent phosphorylation of signaling molecules may be qualitatively or 
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quantitatively affected downstream of Tim-1 signaling.  We have demonstrated recruitment of 

the p85 subunit of PI3K to the Tim-1 cytoplasmic tail and subsequent Akt phosphorylation (64).   

Many of the signaling molecules listed above have been implicated in T helper 

differentiation.  For instance, Tec kinase family members have been suggested to influence 

Th1/Th2 differentiation.  While Itk appears to be important for Th2 development, Rlk (Resting 

Lymphocyte Kinase) may favor Th1 responses (65, 66).  In addition, members of the MAP 

kinase family, particularly JNK and p38, appear to favor development of Th1, over Th2, 

responses (67).  With regard to Akt, studies have demonstrated that enforced Akt expression 

decreases the ability of regulatory T cells to suppress effector cells, and that reduced Akt 

phosphorylation is necessary for effective regulatory T cell function (68-70).  Recruitment or 

activation of specific targets downstream of Tim-1 ligation by different ligands and antibodies 

may therefore favor the development or maintenance of specific T helper subsets. 

1.7 TIM-1 LOCALIZATION 

1.7.1 Immune Synapse Formation 

Intracellular interactions controlling T cell function and fate are of course far more complex than 

a linear cascade of signaling events.  Visualizing the spatiotemporal movement of Tim-1 within 

the cell will provide valuable insight into its function.  When a T cell forms a cognate interaction 

with an APC, a distinct arrangement of antigen receptor, co-stimulatory and adhesion molecules 

forms at the point of contact, often referred to as the immunological synapse (IS). The 

conventional immunological synapse has a “bulls-eye” arrangement.  At the center of the bulls-
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eye is the central supramolecular activation cluster (cSMAC) where many critical signaling and 

co-stimulatory molecules segregate, including TCR/CD3, ZAP-70, PKC-θ, and CD28.  

Surrounding the cSMAC is the peripheral supramolecular activation cluster (pSMAC), which 

includes talin and LFA-1(71).  The presence of these larger and adhesive proteins is thought to 

stabilize the immunological synapse and allow for more prolonged interaction of the T cell and 

APC.  Outside of the cSMAC is the dSMAC, which contains CD45 and talin. 

The functional role of IS formation remains somewhat controversial.  Initially, formation 

of the IS was thought to act solely to concentrate and to enhance signaling.  One hypothesis was 

that formation of the cSMAC allowed many critical signaling molecules to be located in one area 

in order to amplify signaling upon T cell activation by antigen/APC.  However, further 

investigation revealed that tyrosine phosphorylation could be detected well before the formation 

of a “mature” IS.  For instance, while total Lck and ZAP-70 remain at the IS, the phosphorylated 

versions of these proteins lasted 5 and 30 minutes, respectively (72).  This suggested that perhaps 

the IS was not a place for initiation of signaling, but rather for the concentration and subsequent 

down-regulation of signaling, i.e. for termination of signaling and recycling of receptors.  Both 

signaling and degradation may occur at the IS, with the precise kinetics dependent on antigen 

dose (73).  In addition to receptor endocytosis, another postulated role for the IS is that the 

interaction between T cell and APC allows for targeted exocytosis and release of lytic granules 

or cytokines.  In this way the effects of activation would be limited to the cells involved and not 

result in widespread bystander activation or destruction.  The development of new systems to 

better study the dynamic movement and the components of the IS may lead to important insights 

into the purpose of the structured immunological synapse.    
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1.7.2 Distal Pole Complex 

Opposite the immunological synapse is a less well-characterized region known as the distal pole 

complex (DPC).  The DPC is similar to the uropod found on the back end of migrating cells, but 

there are differences, the most striking of which may be the presence of the MTOC at the 

uropod, while in T cell:APC conjugates, the MTOC polarizes toward the IS, rather than the DPC 

(74).  The prototypical marker of the DPC is CD43, which was originally thought to localize 

towards the DPC based on its large size and charge that would make it unfavorable to localize at 

the IS.  However, it is not the bulky extracellular domain and steric hindrance that causes CD43 

to move to the DPC (75).  Rather, the cytoplasmic tail, which mediates interaction of CD43 with 

ERM family proteins (ezrin, radixin, and moesin) is required (76, 77).  The CD43-ERM 

interaction appears to be mediated through a juxta-membrane positively charged resides (KRR) 

(78).  Since Tim-1 also contains a similarly charged motif (KRK) near its transmembrane 

domain, in Chapter 2 we examine whether Tim-1 might also interact with ERM proteins and 

whether this interaction influences Tim-1 localization and function.  Other molecules located at 

the DPC include PKC-ζ, type I protein kinase A (PKA), SHP-1, ezrin/radixin, and multiple other 

proteins reviewed elsewhere (76, 77, 79-82) 

The purpose of the distal pole complex is not fully understood.  The prevailing 

hypothesis is that the DPC serves as a sink to segregate negative regulatory molecules away from 

active signaling at the IS.  This is logical since many of the proteins found at the DPC, including 

SHP-1, CD148, PTP-BL, CD43, RhoGDI, and DLG1, could interfere with the transduction of 

positive early signals (82).  For instance, the phosphatase SHP-1 is a negative regulatory protein 

that could antagonize the activation of the early TCR signals, possibly through its interactions 

with Lck (83).  Another example is based on the fact that the ERM proteins bind ERM-binding 
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phosphoprotein 50, EBP50, and EBP50 binds PAG/Cbp.  Although there is no direct link 

between ERM and PAG activity, overexpression of PAG at the cell surface prevents IS 

formation and subsequent T cell activation (84).  Thus, sequestering specific proteins either 

directly or indirectly away to the DPC may allow for enhancement of signaling at the IS.  

However, not all molecules recruited to the DPC are strictly negative regulators.  Although 

CD43 is considered to be a negative regulator of T cells, based on the enhanced proliferation and 

increased ability to combat viral infection in CD43 knockout mice (85), earlier studies suggested 

that CD43 augments T cell activation (86-88).  Antibody engagement of CD43 activates PKC-θ, 

which leads to pERK1/2 and induces NFAT, AP-1, and NF-κB activation (89).  Cross-linking 

CD43 can also lead to the phosphorylation of PLC-γ2 and p38 (90).  In addition, the assembly of 

molecules associated with positive signaling, including PIP3, ZAP-70, STIM-1 and Orai1, which 

concentrate at the DPC also indicates that the DPC may serve a site for enhancing signaling 

under some circumstances (91-93).  In addition, these molecules may move to the DPC in order 

to escape internalization and degradation at the IS.  A more recent hypothesis is that the DPC 

may be important for creating and/or maintaining cellular polarity.  For instance, scribble and 

PKC-ζ, which are found in the DPC, have well-established roles in regulating cellular polarity in 

epithelial and neuronal cells.  Furthermore, these proteins, particularly scribble, have been shown 

not only to localize opposite the IS but also to be important for establishing a uropod, forming 

stable conjugates, proper T cell migration, and allowing for the asymmetric division of proteins, 

including ezrin and DLG1 (94).  This asymmetric division and establishment of T cell polarity 

may impact T cell function since work by Steve Reiner’s lab has established that scribble and 

PKC-ζ segregate into the more “distal” daughter cell and that the “proximal” and “distal” 

daughter cells have different phenotypes (79).  Another potential role for the DPC is in targeted 
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cytokine release.  While some cytokines, such as IL-2, are released at the IS, other cytokines, 

including TNF-α, are secreted in a multidirectional manner and appear to be secreted from areas 

near the DPC (95).  Greater understanding of not only which proteins localize at the DPC, and 

how they function there, can potentially offer novel insights into T cell function.  Dissecting out 

the location-specific roles of proteins should offer new avenues to explore and may clarify and 

refine the role of the DPC.   

We are very interested in characterizing where Tim-1 localizes, and how this impacts T 

cell function.  Localization of a particular protein can vary between T cell subsets, and such 

differences in location can impact T cell function.  For instance, PKC-θ localizes at the IS and is 

crucial for transducing signals in effector T cells.  However, PKC-θ moves away from the IS 

(towards the DPC) in regulatory T cells (Treg), and this localization is vital for Treg suppressive 

functions (96).  Thus, understanding where a protein functions can often reveal previously 

unappreciated functions for the protein.  Although the literature contains many reports of Tim-1 

function in T cells, most of these studies utilize antibodies.  Two studies identified an interaction 

between Tim-1 and CD3, either by co-IP or co-capping (34, 63); however, where Tim-1 localizes 

in an intact T cell in contact with an antigen presenting cell (APC) has not been reported.  Based 

on insights from previous studies of T cell activation, understanding how Tim-1 might interact 

with APC could shed light on the mechanisms underlying Tim-1 function.  Thus, we examine the 

localization of Tim-1 and consequences of altering Tim-1 localization on T cell activation in 

Chapter 2.   



 27 

1.7.3 Microclusters 

With the advent of more advanced imaging techniques, researchers began to visualize T cell 

activation on a smaller scale.  Although the immunological synapse (IS) was identified in 1997, 

the relationship between the IS and early TCR signaling was not clear for some time.  Signaling 

can occur within seconds and minutes after receptor ligation, but formation of the mature 

synapse usually takes minutes and can last for hours.  Thus, it was logical to propose signaling 

molecules initially exist in small islands that aggregate into microclusters for rapid, kinetically 

favorable signaling, before merging together to form the IS/cSMAC (71, 97).  Indeed, when T 

cells were allowed to adhere to anti-TCR/CD28 coated coverslips, small clusters formed within 

seconds of TCR interaction with the stimulatory antibody, clusters that co-localized with 

phosphotyrosine (98).  A limitation to the antibody coverslip method is that the microclusters 

that form do not move and form mature synapses.  The formation and movement of these 300-

800 nm microclusters were confirmed using a more fluid lipid bilayer system, where T cells were 

allowed to gently settle in phospholipid bilayers coated with various co-stimulatory and adhesion 

molecules.  From these studies, a better appreciation of the small differences in localization 

within the even the cSMAC was gained (99, 100).  The kinetics and dynamics of microcluster 

movement and interacting proteins have offered insight into the mechanisms behind early 

signaling events. Recent work has also established even smaller units of activation called 

nanoclusters.  For instance, using photoactivated localization microscopy (PALM), TCR/CD3 

and LAT were shown to exist in separate, preformed “protein islands” that aggregate after 

antigenic stimulation (101).  As technology progresses, studies are finding smaller and smaller 

units of signaling molecules that can aggregate into larger signaling units before ultimately 

becoming part of the cSMAC. 
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Over the past few years, research into the nature of microclusters has shed even more 

light, and sometimes confusion, on the role of these proteins.  There are now reports suggesting 

that vesicles might contribute to microcluster signaling.  For instance, Purbhoo et al. elegantly 

demonstrated that a subset of vesicular LAT appeared to interact with SLP-76, and that tyrosine 

phosphorylation was greatest in the microclusters with the longest interaction with vesicular 

LAT (102).  In addition, Ron Vale’s group demonstrated that some phosphorylated CD3 zeta 

was found in vesicles (103).  These studies suggest that in addition to the traditional surface 

microclusters that form the cSMAC, there might be a fraction of endocytic vesicles that also 

contribute to TCR-proximal signaling.  Thus, in Chapter 2 we will examine whether Tim-1 forms 

microclusters of signaling molecules to better understand the role of Tim-1 in T cell activation. 

1.8 TIM-1 KNOCKOUT STUDIES 

As described in previous sections, the bulk of the existing literature on Tim-1 concentrates on the 

effects of engaging Tim-1 with anti-Tim-1 antibodies.  However, the effects of Tim-1 antibodies 

on disease exacerbation or amelioration likely depends on a combination of antibody properties, 

including affinity and epitope as well as the specific method of disease induction.  To bypass the 

issues associated with specific antibodies, two groups have generated Tim-1 knockout mice to 

examine the role of Tim-1 in a variety of diseases, and one group has created a mouse lacking 

just the Tim-1 mucin domain.  In the first published Tim-1 knockout mouse study, the authors 

did not observe an effect of either Tim-1 knockout or overexpression on in vitro Th2 cytokine 

production or in vivo disease, the latter with a Th2-biased model of Schistosoma.  Indeed, the 

authors really only noted an increase in Tim-1 expression in germinal center B cells but found no 
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functional consequences of this expression (104).  In a subsequent paper, utilizing the same 

mice, the authors concluded Tim-1 is not required for airway hyper-reactivity, although closer 

examination reveals greater cellular infiltrates in the Tim-1 knockouts as compared to littermate 

controls (105).  However, investigation of the role of Tim-1 in a model of airway hyper-

reactivity in another Tim-1 knockout mouse demonstrated increased airway hyper-reactivity, as 

measured by increased inflammatory infiltrate and decreased lung elasticity (106).  In addition, 

this Tim-1 knockout displayed increased Th2 and Th17 cytokine production (106).  In 

accordance with the previous study, this study also suggested that expression of Tim-1 on 

immune cells other than T cells influences immune responses.  This is supported by work in the 

literature suggesting that DCs expressing Tim-1 are responsible for regulating T cell activation 

and cytokine production (40).  While one group concluded that Tim-1 does not play a role in 

regulating immune responses in their model systems, another group suggested that Tim-1, 

especially on non-T cells, may play an inhibitory role in the generation of immune responses. 

In support of the concept that Tim-1 may play a role in the generation of immune 

responses due to its effects on non-T cells, a third group generated a Tim-1 “mucin-less” mouse 

and examined its effects on autoimmunity.  Polymorphisms in the mucin domain of both murine 

and human Tim-1 have been correlated to asthma susceptibility, especially in conjunction with 

HAV exposure.  Thus, the authors were interested in examining whether a deletion of the mucin 

domain would affect immune function and disease progression.  This mouse was generated by 

deleting exon three.  Before six months of age, Tim-1 mucin-less mice had a mostly normal 

phenotype, but after ten months, they developed signs of activation and autoimmunity (107).  In 

particular the T cells were mostly memory cells with high levels of CD44 and the B cells failed 

to produce IL-10.  This is consistent with another report in the literature noting that Tim-1 is 
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expressed on regulatory B cells, and that Tim-1 ligation is important for their suppressive 

function (44).  These studies are suggestive of roles for Tim-1 in non-T cells and the ability of 

Tim-1 to influence autoimmunity and immune function. 

All four Tim-1 knockout/deletion studies offered insights into the role of Tim-1 in 

immune modulation.  Although use of the Tim-1 knockout from the McKenzie group suggested 

no role for Tim-1 in T cell immune responses, certain caveats should be considered.  The authors 

generated Tim-1 knockout mice on a BALB/c background that had been backcrossed for six 

generations.  While in general this may appear to be sufficient, the Tim-1 gene is found on 

mouse chromosome 11, which is proximal to many other genes implicated in T cell activation, 

including the Th2 cytokine locus and Itk, so the remaining mixed genetic background might be 

of consequence.  Also, despite the authors’ claims that Tim-1 does not play a role in AHR, closer 

examination of the data suggests an upward shift in the dose-response curve for methacholine-

induced AHR in the Tim-1 knockouts, which would indicate that Tim-1 does have a role in 

promoting asthma pathogenesis (105).  Interestingly, this effect appears to be due to differential 

eosinophil recruitment, rather than T cell production of Th2 cytokines.  This is consistent with 

other reports in the literature demonstrating that anti-Tim-1 antibody treatment affects the 

number of eosinophils in the lung and BAL after induction of experimental asthma (2, 36).  

Similarly, the other Tim-1 knockout and airway hyperreactivity study saw increased cellular 

infiltrates.  However, this second study also noted non-T cell intrinsic increases in cytokine 

production.  Rather than conclude that Tim-1 does influence AHR, this group concluded that 

Tim-1 is an inhibitory molecule influencing the expression of multiple cytokines and that loss of 

Tim-1 ameliorates the effects of AHR (106).  Finally, the Tim-1 mucinless study indicates that 

Tim-1, particularly on B cells and in older mice, affects cytokine production of IFN-γ (increases) 
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and IL-10 (decreases) as well as enhances susceptibility to autoimmune disease (Tim-1-lpr mice 

have worse autoimmunity).  It is possible that Tim-1 defects may not be readily apparent in 

younger mice, and longer survival without Tim-1 may reveal previously unknown defects in 

immune function, especially when combined with some factor of genetic predisposition.  All of 

these investigations have exhibited some level of immune modulation in the absence of wild type 

or mucinless Tim-1.  Further, since asthma is such a complex disease with multiple genetic and 

environmental factors, it would be surprising if Tim-1 completely accounted for AHR.   

1.9 TIM-1 ON NON-T CELLS 

1.9.1 Tim-1 expression  

Tim-1expression is found on multiple organs and tissues in the body, suggesting that Tim-1 has 

functions that go beyond T cells.  A quantitative PCR survey identified high levels of Tim1 

message in the kidney, consistent with its previous identification as the ischemia-associated 

molecule Kim-1, as well as lower levels of message in lung, lymph node, spleen, and thymus (2).  

In addition, Tim-1 has been found in many other non-immune tissues and organs, including 

mucosal membranes and epithelial cells of the respiratory tract (47).  As Tim-1 expression in 

various tissues has been discovered, the potential roles for Tim-1 expand. 

 While most research in the field and this thesis has focused on the function of Tim-1 in T 

cells, a growing body of work has begun to uncover the importance of Tim-1 in other cells of the 

immune system.  Much of the literature supports a role for Tim-1 influencing T cell function, 

especially under conditions of co-stimulation, but it is possible that the major effect seen by the 
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anti-Tim-1 antibodies on disease pathogenesis and progression may be attributed to other Tim-1 

expressing cells.  Thus, the Tim-1 knockout studies discussed above implicated a role for Tim-1 

in regulating a variety of immune cells, most notably antigen presenting cells DCs, B cells, and 

more innate leukocytes (106, 107).  However, very little is understood about how Tim-1 

functions in these other cell types.  

1.9.2 Tim-1 and non-lymphocytes 

Tim-1 also appears to influence the function of mast cells and macrophages. Tim-1 can be 

detected on the surface of peritoneal mast cells and bone marrow-derived cultured mast cells. 

Interestingly, Tim-1 expression is down-regulated after IgE and antigen stimulation. Tim-4 

treatment of mast cells promotes production of Th2 cytokines, such as IL-4, IL-6 and IL-13, 

without affecting degranulation (108).  Macrophages also appear to be regulated by Tim-1, 

through its interaction with Tim-4 on the surface of the macrophages. Thus, addition of Tim-1 to 

a macrophage cell line resulted in increased production of TNF-α, IL-6 and IL-10, as well as 

increased levels of the co-stimulatory molecules B7-1, B7-H1, and PD-L2 (109). At least in the 

case of PD-L2, the level of expression after Tim-1 treatment was significantly higher than with 

LPS stimulation. 

 Tim-1 is also found on DCs and upregulated upon activation.  The high affinity anti-Tim-1 

antibody 3B3 induced NF-κB as well as production of the cytokines IL-1, IL-6, and IL-23.  In 

the absence of APCs, Tim-1 antibody ligation in the presence of CD3 and CD28 on CD4+ T cells 

could only produce a Th2 phenotype.  However, in the presence of APCs, 3B3 augmented 

production of Th1, Th17 and Th2 type cytokines (40).  This indicated that the ability of Tim-1 

ligation to skew T helper differentiation and function requires APCs, and is not due solely to 
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Tim-1 on T cells.   

Two studies have investigated the function of Tim-1 in NKT cells.  Both of these studies 

demonstrated constitutive expression of Tim-1 on the surface of NKT cells and also found that 

ligation of Tim-1 influences NKT cell function.  One study revealed that the Tim-1:PS 

interaction activates iNKT cells by inducing co-stimulation dependent IFN-γ and IL-4 production 

in vitro and that treatment with anti-Fas antibody in the lungs led to NKT recruitment and IL-4, 

IL-13, IL-17, and IFN-γ mediated airway hyperreactivity.  This response could be blocked by 

inhibiting the Tim-1:PS interaction with an anti-Tim-1 antibody (58).  Cross-linking Tim-1 with 

different antibodies also modulates NKT function and lung disease.  In contrast to the previous 

study, TCR or α-GalCer co-stimulation appears to induce IL-4 production while suppressing 

IFN-γ production, although the effects on cytokine production varied, depending on the specific 

anti-Tim-1 antibody used, with higher affinity antibody inducing greater cytokine production.  

Adoptive transfer of α-GalCer and anti-Tim-1 treated NKT cells exacerbated a mouse model of 

idiopathic pulmonary fibrosis by enhancing TGF-β but suppressing IFN-γ (110).  Both of these 

studies demonstrate that ligation of Tim-1 has the ability to influence NKT function in a co-

stimulatory manner and ultimately disease pathogenesis through its effects on Tim-1. 

1.9.3 Tim-1 on B cells 

One of the most exciting recently described roles for Tim-1 has been in the context of B cells.  

The first paper characterizing a Tim-1 knockout mouse demonstrated upregulation of Tim-1 on 

germinal center B cells (104). Furthermore, a more recent study of Tim-1 knockout mice by the 

same group suggests that Tim-1 deficiency does not alter antibody production (105).  However, 



 34 

another group recently demonstrated that stimulation of B cells with an anti-Tim-1 antibody can 

result in the upregulation of CD138, a plasma cell marker, and production of antibodies of the 

IgG2b, IgG3, and IgE isotypes (111).  In addition, Tim-1 was found to be expressed more highly 

on B rather than T cells, particularly in a subset of IL-10 producing CD1DhiCD5+, regulatory B 

cells.  Treatment with the lower affinity anti-Tim-1 antibody, RMT1-10, promotes a Th1 

phenotype and acceleration of allograft rejection in the absence of B cells.  In contrast, in the 

presence of B cells treatment with the same antibody led to a Th2 phenotype and long-term graft 

survival (44).  Further, mice in which the Tim-1 mucin domain had been deleted displayed a 

defect in B cell IL-10 production (107).  These studies indicate that Tim-1 may modulate B cell 

function, and greater work will need to be conducted to clarify the role of Tim-1 in B cells. 

1.10 SIGNIFICANCE:  

Tim-1 engagement by antibody or ligands can modulate the immune response through effects on 

signaling pathways, localization, and regulation of immune cell function.  Although Tim-1 has 

been implicated in immune conditions ranging from asthma, multiple sclerosis, arthritis, 

systemic lupus erythematosus, to allograft response modulation, the precise mechanisms by 

which Tim-1 regulates T cell function and fate remains largely unexplored.  This work will 

determine the effect of Tim-1 ligands and antibodies on (1) localization with signaling molecules 

in microclusters and at the SMAC, and (2) proteins recruited to the Tim-1 cytoplasmic tail 

important for phosphorylation and proximal signaling as well as downstream pathways for Tim-1 

induced T cell activation and T helper differentiation.  Better understanding of the signaling 

pathways by which Tim-1 antibodies and ligands influence T cell activation and differentiation 
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will be important in the development of therapeutic agents to modulate the immune response.   
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2.0  TIM-1 FORMS MICROCLUSTERS AND LOCALIZES AWAY FROM THE 

IMMUNOLOGICAL SYNAPSE 

2.1 ABSTRACT 

The interaction between T cells and APCs bearing cognate antigen results in the formation of an 

immunological synapse (IS). During this process, many receptors and signaling proteins form 

microclusters that eventually segregate to regions proximal to the synapse. This microcluster 

movement and IS formation is thought to influence T cell function. However, some proteins are 

transported away from the IS, which is controlled in part by ERM family proteins. Tim-1 is a 

transmembrane protein with co-stimulatory functions that is found on many immune cells, 

including T cells. However, the formation of microclusters and the expression pattern of Tim-1 

on T cells upon activation by APCs has not been explored. In this chapter we describe the 

arrangement of Tim-1 microclusters.  Interestingly, we demonstrate that the majority of Tim-1 

on activated T cells is excluded from the IS. Tim-1 predominantly resides outside of the IS, and 

structure/function studies indicate that the cytoplasmic tail influences Tim-1 polarization. 

Specifically, a putative ERM binding motif (KRK 244-246) in the Tim-1 cytoplasmic tail 

appears necessary for proper Tim-1 localization. Furthermore, mutation of the KRK motif results 

in enhanced Tim1-mediated early tyrosine phosphorylation downstream of TCR/CD28 

stimulation. Paradoxically however, the KRK motif is necessary for Tim-1 induced NFAT/AP-1 
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activation and co-stimulation of cytokine production. This work reveals unexpected complexity 

underlying Tim-1 localization and suggests potentially novel mechanisms by which Tim-1 

modulates T cell activity.  

2.2 INTRODUCTION 

Antigen receptor, co-stimulatory, and signaling proteins adopt distinct patterns of localization 

and segregation upon T cell stimulation by peptide antigen presented by antigen-presenting cells 

(APC). Current models suggest that these patterns are critical for proper regulation of T cell 

activation. T cell recognition of an APC bearing cognate peptide drives the formation of a 

structure termed the immunological synapse (IS) or supramolecular activation cluster (SMAC) 

(112). In a “mature” synapse, many proteins important for transduction of TCR signaling 

concentrate at the center of the contact site, the central supramolecular activation cluster 

(cSMAC), between the T cell and APC. These proteins include CD3, CD28, ZAP-70 and PKC-

θ(112) (113, 114). At the IS, this concentration of signaling proteins may enhance signaling 

before engaged TCR’s are internalized, possibly to terminate signaling (71).  

Opposite the immunological synapse is a region known as the distal pole complex (DPC). 

Many large adhesion and glycosylated molecules, such as CD43, are transported to this region 

(71, 115). Formation of the DPC is thought to be driven by ERM (ezrin, radixin, and moesin) 

family proteins (76, 77). The prevailing hypothesis is that the DPC serves as a reservoir for 

sequestering negative signaling molecules, such as CD43, away from the IS to allow for greater 

T cell activation (74). However, the presence of a pool of active signaling molecules, including 

ZAP-70, PIP3, and STIM-1 and Orai1 suggests an additional positive role for the DPC (91-93). 
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While the precise function of the DPC is disputed, formation of the DPC does appear to impact T 

cell activation. For example, disrupting localization of proteins to the DPC with an ERM 

dominant negative construct can disrupt specific functions, including transcriptional activation 

and cytokine production (76, 116).  

The localization and interaction of proteins play key roles in T cell activation.  

Intracellular tyrosine phosphorylation, Ca2+ flux, and cytoskeletal rearrangements all begin 

within seconds of TCR ligation before the formation of a mature synapse (98, 117). It was 

discovered that microclusters of TCR and other associated signaling proteins, such as ZAP-70 

and LAT, are formed upon stimulation and co-localize with tyrosine phosphorylation, and 

generation of these microclusters precedes calcium flux (98). Imaging has visualized tyrosine 

phosphorylated signaling microclusters that form around the edges of the cell that in turn 

aggregate and eventually coalesce at the SMAC (72, 100, 118).  The data suggest that 

microcluster formation precedes formation of a mature synapse and that aggregation of 

microclusters at the periphery induce signaling that is terminated by the time they form the 

cSMAC. 

Localization of microclusters also regulates co-stimulation of T cells.  For instance, 

CD28 microclusters formed in the presence of their ligands initially move towards the cSMAC 

before separating from the TCR and sequestering themselves to a region around the periphery of 

the cSMAC where CD28 may continue to prolong signaling (99). Thus, understanding the 

movement and localization of microclusters has been crucial in greater understanding of their 

functions.  

Microcluster formation has generally been studied with two methods.  One method 

pioneered by the Samelson lab utilizes an elegant reductionist system of antibody coated glass 



 39 

coverslips to study microclusters.  The TCR microclusters become immobilized when binding to 

the anti-TCR coated glass, and this method has been useful for studying the early signaling 

events (119).  Much of the work with antibody coated cover slides has been confirmed using a 

lipid bilayer system where ligands are inserted into a phospholipid bilayer (120).  Using this 

system, investigators can observe movement of microclusters as they interact with the ligands 

and antibodies in the bilayer.   

Transmembrane immunoglobulin and mucin 1 (Tim-1) is a co-stimulatory molecule 

found on the surface of many immune cells. It was first identified in primates as a Hepatitis A 

virus cellular receptor (HAVCR1), although the mouse homolog does not bind HAV (121). 

Variants in murine (and human) Tim-1 were later associated with asthma susceptibility (18, 21, 

27). Early work on the immune function of Tim-1 also revealed a role for Tim-1 as a co-

stimulatory molecule on CD4+ T helper cells by enhancing inducible transcription, cytokine 

production, and proliferation (2, 33). Tim-1 has also been implicated in the regulation of B cells, 

CD8+ T cells, dendritic cells, NKT cells, and mast cells (40, 43, 44, 58, 104, 108, 110, 111). 

Tim-1 antibodies have demonstrated efficacy in the modulation of immune function in different 

models of disease, including asthma and organ transplantation (2, 36, 37, 41-44).  

Although much is known about the effects of Tim-1 on transcription factor induction and 

cytokine production, less is known about the sub-cellular localization of Tim-1, especially in T 

cells. The function of many molecules has not been fully appreciated until their localization was 

understood. For example, the role of PKC-θ in T cells was greatly enhanced by the discovery 

that it localizes at the SMAC in effector T cells and away from the IS in regulatory T cells (96, 

122). Understanding Tim-1 localization in T cells may provide similar insights into its function, 

particularly since some controversy still exists about the role of Tim-1 in T cell signaling. While 
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previous studies have implicated Tim-1 in enhancing T cell activation (2, 33, 63, 64), one report 

has suggested that Tim-1 might function in either a positive or negative fashion, depending on 

the strength of antibody ligation (34). Another recent study demonstrated increased cytokine 

production by Tim-1 deficient T cells, suggesting that Tim-1 may also act as a negative regulator 

of T cell function, at least under some circumstances (106). Thus, defining Tim-1 localization on 

T cells under different conditions may yield novel insights that help to resolve these apparently 

disparate findings.  

The localization of Tim-1 has not been extensively explored. A previous report suggested 

that Tim-1 exists in vesicles in the cytoplasm of human embryonic kidney cells (293) and 300.19 

pre-B cells (45). Another study demonstrated that Tim-1 expressed on DO11.10 TCR transgenic 

T cells localized towards apoptotic thymocytes with exposed phosphatidylserine (PS), a Tim-1 

ligand (58). One study has suggested that human TIM-1 interacts with ZAP-70 and PI3K (63). 

Another study demonstrated Tim-1 co-capping with CD3 (34). However, more data about Tim-1 

localization and movement upon activation by antigen and APC’s may aid the understanding the 

function of Tim-1 in T cells.  

Despite previous studies implicating Tim-1 as a co-stimulatory molecule and modifier of 

disease pathogenesis, the molecular mechanism(s) underlying Tim-1 activity remain unclear. At 

this point, relatively little is known about the sub-cellular localization of Tim-1, especially in T 

cells. In particular, where Tim-1 distributes (or re-distributes) upon T cell activation is poorly 

characterized. In this study, we will determine whether Tim-1 exists in signaling microclusters.  

Then, we will define the patterns of Tim-1 localization before and after T cell recognition of 

antigen/MHC, as well as the functional consequences of altering Tim-1 localization. Our studies 

have revealed unexpected complexity in the regulation of Tim-1 localization and its function in T 
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cell activation. These findings may have implications for understanding the function of Tim-1 in 

regulating immune responses. 

2.3 MATERIALS AND METHODS  

Reagents and cell culture 

Jurkat, D10, Raji, and CH27 cell lines were used and cultured as previously described (123). The 

following antibodies were used: pSrc Y416 and pZAP-70 Y319 (Cell Signaling), PKC-θ (C-18, 

Santa Cruz), CD43 (clone S7, BD Pharmingen), M2-Cy3 (Sigma Aldrich), EEA1 (BD 

Transduction), M2 anti-flag (Sigma Aldrich), anti-human CD3 (Becton Dickinson), mouse CD3 

and CD28 (BD Pharmingen), human CD28 (Life Technologies), Tim-1 Fc (eBiosciences), anti-

TCR antibody C305 (Harlan), anti-Tim-1 antibodies (3B3 and 5F12), anti-Tim-4 antibodies 

(3A1, 3H11 and 5G3). Alexa fluor-conjugated secondary antibodies were from Life 

Technologies. Conalbumin was from Sigma Aldrich, and SEE from Toxin Technology.  

 

Microcluster formation 

D10 and Jurkat cells transfected with Tim-1 were allowed to settle on antibody coated coverslips 

that were created as described previously (124).  Briefly, T cells were allowed to settle on 

coverslips coated with anti-CD3, anti-CD28, anti-VCAM-1, and/or anti-Tim-1.  The interface 

between the coverslip and spread cells was imaged either by confocal microscopy or by TIRF.  

For fixed images, cells were permeabilized with TX-100 and co-stained for anti-pY, pZAP-70, 

CD3 at 1:100 before secondary staining with Alexa 555 at 1:2000. 
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T cell:APC conjugates for confocal imaging 

D10 cells were transiently transfected with up to 20µg total of plasmid DNA by electroporation 

at 250V/950mF and rested for 16 hours. Live cells were recovered the next day by spinning over 

a cushion of Lympholyte-M. D10 T cells (0.3x106) were combined with an equal number of 

conalbumin-loaded CH27 cells by centrifugation at 3000 rpm for 3 minutes, followed by 

incubation at 37 degrees for 5-40 minutes. The pellet was gently resuspended by pipetting 3 

times with a large-bore 1 ml pipet tip. Cells were allowed to settle on a poly-l-lysine coated 

coverslip for 20 min before being fixed at a final concentration of 2% PFA. Cells were 

permeablized with 0.1% TX-100 and were blocked for 30 min in 10% anti-goat or anti-donkey 

serum. The following were used: M2-Cy3 (2 mg/mL), pSyk/ZAP-70 (1:100), PKC-q (1:100), 

and EEA1 (1:100). Secondary antibodies were used at the following concentrations: anti-rabbit 

Alexa-647 - 1:1000, anti-mouse Alexa-488 - 1:2000, anti-mouse Alexa-555 - 1:2000, anti-rat-

Cy3 - 1:1000. Mid-plane images were captured on an Olympus FluoView 1000. Images were 

exported as bit TIFFs and analyzed with Image J. Figures were assembled in Canvas 8. For live 

cell imaging, Jurkat T cells were co-transfected with Tim-1 GFP and ZAP-70 Tag RFP. Equal 

numbers of Jurkat and SEE loaded Raji cells (0.075x106 cells) were maintained at 370 C in 

Matek dishes and imaged on an Olympus FluoView 1000 or a Nikon A1. 

Mature conjugates were identified by morphology and localization of ZAP-70 or PKC-q 

at the interface between the B and T cell. Images were analyzed in Metamorph or Image J. When 

Tim-1 was localized opposite the IS, the cells were termed “anti-synapse.” Tim-1 in conjugates 

that appeared close to the IS were termed “front half” of the cell. Tim-1 that appeared to be both 

opposite and near to the IS were termed “unpolarized.” Finally, Tim-1 that had a predominantly 

intracellular and vesicular appearance were noted as “punctate.” 
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For a select number of imaged conjugates that expressed Flag-Tim-1, two parameters 

were measured using ImageJ. First, the distance of Tim-1 from the synapse was determined as 

the angle between the center of the IS to the center of the Tim-1 region with the vertex of the 

angle set at the center of the cell. The extent of spread of Tim-1 was measured as the angle 

between the two edges of the Tim-1 region. 

 

Latex Beads 

8.7micron aldehyde/sulfate latex beads (Life Technologies) were prepared according to 

manufacturer instructions. 80x106/mL beads were coated with 50mg/mL anti-CD3 and 50 

mg/mL anti-CD28. 

 

DNA Constructs 

Tim-1, Tim-1 Y276F, and Tim-1 cytoplasmic tail truncation were generated as described 

previously (33). Tim1-GFP was generated by inserting the C57Bl/6 Tim-1 into pEGFP-N1. Site-

directed mutagenesis was utilized to mutate a Flag-Tim-1 construct, using the QuikChange 

system (Stratagene). The KRK at position 244-246 of the C57BL/6 allele of Tim-1 was mutated 

to QGQ using the following primers: Forward: cc aggta catac ttatg caagg gcagt cagca tctct 

aagcg; R everse: cgctt agaga tgctg actgc ccttg cataa gtatg tacct gg. The sequence w as verified b y 

automated sequencing. The ERM DN-GFP construct was a gift from Dr. Janis Burkhardt. ZAP-

70 cDNA and vector containing Tag RFP were gifts from Dr. Steven Bunnell. 

 

Flow Cytometry 
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0.5x106 Jurkat and D10 T cells were stained with 1mg of M2 (anti-Flag) on ice and then stained 

with 1:200 Alexa-647 for surface staining. For intracellular staining cells were fixed in 1.5% 

paraformaldehyde at room temperature for 10 minutes. Cells were then permeablized on ice with 

ice cold methanol for 15 minutes before being washed and stained for M2 (anti-Flag). 0.5x106 

CH27 or Raji cells were stained with 1-4ug of anti-Tim-1 or anti-Tim-4 antibodies on ice and 

then secondarily stained with 1:200 Alexa-647 on ice. Samples were read on a BD LSR II; 

FlowJo software was used to analyze data. 

 

Tyrosine Phosphorylation Western Blotting 

20x106 Jurkat T cells were transfected with empty vector, Tim-1, or Tim-1QGQ. 1.5x106 cells 

were lysed using 1% NP-40 lysis buffer in addition with beta-glycerophosphate, sodium fluoride, 

sodium orthovanadate, AEBSF, aprotinin, leupeptin, pepstatin (Calbiochem/EMD 

Biochemicals). Lysates were run on a 10% SDS-PAGE gel before being transferred to PVDF 

membrane and blotted with anti-pY (4G10). Blots were developed with Super-Signal Pico ECL 

(Pierce) and imaged on a Kodak Image Station 4000MM. 

 

TCR Internalization 

Jurkat cells were transfected as described above with pCDEF3 (empty vector), WT Tim-1, Tim-

1QGQ, or Tim-1 lacking the cytoplasmic tail truncation (Tim-1DCyto). Cells were re-suspended at 

0.5x106 in PBS and placed on ice in the presence of anti-TCR (C305) at a dilution of 1:250 for 

30min. Cells were treated with 80 mM Dynasore for 20 minutes on ice to prevent clathrin-

mediated TCR internalization. Cells were then incubated at 370 C for 0, 5, 10, 20, 30, 60, and 

120 minutes. Immediately after the time points, cells were washed with ice cold PBS before 
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staining with anti-human CD3 and M2 (to detect Flag Tim-1). Samples were read on a BD LSR 

II; data were analyzed using FlowJo software. 

 

Luciferase Assays 

Jurkat T cells were co-transfected with empty vector, WT Tim-1, or Tim-1 QGQ, along with an 

NFAT/AP-1 luciferase reporter construct. Cells were allowed to recover for 16 hours before 

stimulating with the anti-TCR antibody C305 (1:1000) in the presence or absence of anti-CD28 

(1:100) for 6 hours at 370. D10 T cells were co-transfected with empty vector, WT Tim-1, or 

Tim-1 QGQ, along with an NFAT/AP-1 luciferase reporter construct. Cells were allowed to 

recover for 16-18 hours before stimulating with 1 mg/mL biotinylated anti-CD3, -CD4 and -

CD28, plus streptavidin for six hours at 370. Luciferase activity was determined as described 

previously (125).  

 

ELISA 

0.5x106 Jurkat cells were stimulated with anti-TCR antibody C305 (1:1000), with or without 

CD28 (1:200) for 24 hours. Supernatants were taken and production of IL-2 was determined by 

ELISA (BD OptIA). D10 T cells (0.5x106) were stimulated with 1mg/mL anti-CD3, -CD4 and -

CD28 for 24 hours before supernatants were collected for measurement of IL-4 and TNF-a by 

ELISA. Comparisons were analyzed by paired Student’s t test, performed with Prism. 

 

Limitations to Data Interpretation 

The chief limitation in these studies is the subjective nature of data collection and interpretation 

in the confocal imaging experiments. To determine true positive signal, cells that were stained 
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with comparable amounts of secondary antibodies alone were compared to staining with primary 

and then secondary antibodies. In addition, the laser voltage was adjusted so that pixels were not 

saturated. Protein localization was observed in two different T cell lines, using both epitope- and 

GFP-tagged constructs. The core observation of WT mTim-1 exclusion from the immune 

synapse was observed over the course of dozens of experiments. Quantitation of WT and mutant 

Tim-1 localization was pooled from conjugates obtained in multiple separate experiments. Other 

experiments were performed at least three times, with statistical analysis being performed on 

replicates within a representative experiment.  

2.4 RESULTS 

2.4.1 Tim-1 forms microclusters with pY proteins 

Stimulation of T cells leads to activation of multiple kinases and subsequent signaling molecule 

organization into microclusters, and Tim-1 has been demonstrated to induce T cell activation.  

However, how Tim-1 mediates its co-stimulatory functions has not been fully elucidated.  

Further, understanding the localization and movement of various signaling molecules in relation 

to other signaling molecules has contributed greatly to enhancing knowledge of their function.  

Thus, we were interested in determining whether Tim-1 forms microclusters and whether these 

microclusters have similar patterns of localization as compared to other signaling molecules.   

In order to study Tim-1 microclusters, we utilized a system of antibody coated coverslips 

to activate and to observe the formation of microclusters in T cells.  We allowed T cells to settle 

on anti-CD3, anti-CD28, and/or anti-VCAM or anti-LFA coated coverslips in order to spread 
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and to become activated.  Anti-CD3 and anti-CD-28 coated coverslips induce both spreading and 

activation while integrin binding with anti-VCAM or anti-LFA alone causes cell spreading but 

not T cell activation.  Here we demonstrate that Tim-1 forms microclusters upon TCR 

stimulation with or without CD28 co-stimulation in both D10 and Jurkat cells (Fig. 2-1A and 2-

2A/B). However, when D10 cells are stimulated with anti-LFA alone, the cells spread but do not 

form as distinct Tim-1 microclusters when compared to TCR or TCR/CD28 stimulation (Fig. 2-

1A/B, Fig. 2-2A).  Thus, Tim-1 microcluster formation requires activation and not just 

spreading.   

 

 

Figure 2-1. Tim-1 forms more MC upon activation than spreading 

(A) D10 cells transiently transfected with Tim-1 GFP were  allowed to settle on anti-CD3 coated 

slides.  Cells were then co-stained with 1:100 4G10 followed by Alexa-555 secondary. (B) D10 

cells transfected and stained as above were allowed to settle and spread on anti-LFA-1 coated 

slides. 
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Next, we sought to determine whether these Tim-1 microclusters might be signaling.  

Since tyrosine phosphorylation is often an early step and indication of active signaling, we co-

stained Tim-1 transfected cells with anti-pY.  Spreading of T cells by anti-LFA-1 alone is 

insufficient to induce tyrosine phosphorylated Tim-1, and similarly stimulation with only anti-

CD3 does not induce much co-localization between Tim-1 microclusters and pY.  However, 

more microclusters are undergoing pY signaling upon co-stimulation by anti-CD3/CD28 (Fig. 2-

1A and 2-2A), which is consistent with reports in the literature that Tim-1 signaling is enhanced 

by co-stimulation (33).  

2.4.2 Tim-1 microclusters do not interact with CD3 or ZAP-70 

Since Tim-1 has been demonstrated to induce T cell activation downstream of TCR/CD28 

stimulation, we next sought to determine the specific tyrosine phosphorylated proteins 

interacting with Tim-1.  Human TIM-1 binds important signaling molecules, including PI3K, 

ZAP-70, Itk, and CD3 (63), while mouse Tim-1 has been suggested to interact with CD3, the p85 

subunit of PI3K, and PLCγ1 (34, 64).  Thus, we postulated that Tim-1 might be interacting with 

pZAP-70 or CD3 microclusters; however, the majority of Tim-1 microculsters do not co-localize 

with CD3 or ZAP-70 in either D10 or Jurkat cells (Fig. 2-2B-C). 
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Figure 2-2 Tim-1 forms microclusters associated with tyrosine phosphorylated proteins.  

(A) Jurkat transfected with Tim-1-GFP were settled on anti-CD3/anti-CD28 coated slides for 30 

minutes.  Cells were then fixed and lysed with 0.1%Triton X-100 before staining for tyrosine 

phosphorylation (4G10) and secondarily with Alexa 555.  (B)  D10 cells transfected with GFP-

Tim-1 were settle on anti-CD3/anti-CD28 coated slides for 15 minutes before fixation, lysing, 

and staining with CD3 followed by Alexa 555 secondary. (C) Jurkat T cells co-transfected with 

Tim-1-GFP and ZAP-70 RFP were settled on anti-CD3/CD28 coated slides. 

 
Microcluster formation and signaling may depend on the stimulation conditions.  For instance, 

CD28 microclusters require their ligand(s), particularily B7-2, in addition to TCR stimulation for 
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proper microcluster and IS localization (99, 126).  Since Tim-1 is also a co-stimulatory molecule, 

we postulated that activation with a high affinity anti-Tim-1 antibody, 3B3, might impact its 

localization and interaction with other signaling molecules.   D10 cells that were allowed to settle 

on slides coated with anti-CD3/CD28/Tim-1 did not appear to have increased co-localization 

with pZAP-70 (Fig. 2-3A).  Interestingly, there did appear to be more peripheral ZAP-70 

microclusters in anti-TCR/CD28/Tim-1 stimulated cells as compared to anti-TCR/CD28 (Fig. 2-

3A and 2-2A).   

 

Figure 2-3: Altered Tim-1 microclusters in Tim-1 mutant constructs 

D10 cells transfected with Tim-1 (A), Tim-1Y276F (B), or Tim-1 ∆Cyto (C) were allowed to settle 

on anti-CD3/CD28/Tim-1 (3B3) coated slides for 15 minutes.  Cells were co-stained for pZAP-

70. 

Next, we examined the role of integrin co-stimulation on Tim-1 microclusters.  Although 

integrin ligation alone does not induce signaling, it has been shown to sustain TCR mediated 
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signaling.  Ligation of integrins increased the surface area for contact between the cell and 

antibodies, like CD3.  Nguyen et al demonstrated that the use of VCAM-1 to ligate VLA-4 in the 

presence of anti-TCR (Okt3) enhances SLP-76 signaling.  Specifically, co-stimulation with 

VCAM slowed centripedal actin flow, which allowed for longer interactions between SLP-76 

with ZAP-70 at peripheral microclusters, where the greatest signaling is thought to occur (127).  

We postulated that stabilization of microclusters by integrin binding might allow better 

visualization of transient Tim-1 and ZAP-70 microcluster interactions.  We utilized both LFA-1 

and VCAM-1, which bind ICAM-1 and VLA-4, respectively to examine the interaction between 

Tim-1 and ZAP-70.  We were unable to detect increased co-localization between Tim-1 and 

ZAP-70 microclusters with either LFA-1 or VCAM-1 ligation (Fig. 2-4A).  At least at 15 

minutes of stimulation, costimulation by integrin binding was insufficient to detect Tim-1 and 

ZAP-70 interactions.   

2.4.3 Tim-1 may require Y276 for proper microcluster formation 

Previous work from this laboratory has demonstrated that Tim-1 mediated signaling requires the 

cytoplasmic tail, particularly Y276.  We wanted to characterize the effect of mutation or absence 

of Y276 on Tim-1 microclusters.  We examined the formation of Tim-1 microclusters when 

Y276 (Tim-1Y276F) is mutated or in the absence of the Tim-1 cytoplasmic tail, which would also 

lack Y276 (Tim-1∆Cyto).  Fewer microclusters were formed in the Y726F mutation.  It is 

interesting that the type of co-stimulation may influence Tim-1 localization even in the absence 

of Tim-1 tyrosine phosphorylation.  Stimulation by anti-TCR/CD28/Tim-1 seemed to 

concentrate Tim-1Y276F microclusters at the center (Fig. 2-3B).  In contrast, anti-TCR/CD28/LFA 

stimulation enhanced Tim-1Y276F microcluster aggregation at the periphery (Fig. 2-4B).  
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Mutation or truncation of Tim-1 did not influence the ability of pZAP-70 to form microclusters 

regardless of stimulation conditions.   More structure/function work will need to be conducted to 

identify the necessary Tim-1 components for microcluster formation and localization. 

Figure 2-4: Tim-1 cytoplasmic tail may be involved in microcluster formation 

D10 cells transfected with Tim-1 (A), Tim-1Y276F (B), or Tim-1∆Cyto (C) were allowed to settle on 

anti-CD3/CD28/VCAM coated slides for 15 minutes.  Cells were co-stained for pZAP-70. 
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 Surprisingly, the effect of the cytoplasmic tail truncation of Tim-1 is less dramatic than the 

effect of the Tim-1Y276F.  The Tim-1∆Cyto construct forms more microclusters than the Tim-1Y276F; 

however, the pattern of the microclusters is different than wild type and again does not co-

localize with ZAP-70 microclusters (Fig. 2-3C and 2-4C).  Co-stimulation with either Tim-1 or 

integrins appears to generate more microclusters at the cell’s periphery. 

2.4.4 Tim-1 does not co-localize with peripheral ZAP-70 microclusters  

The previously described experiments were all fixed at specific time points, approximately 5-15 

minutes.  One reason we may not have detected an interaction between Tim-1 and ZAP-70 is that 

we were not catching the correct time.  Thus, we co-transfected Tim-1 GFP with ZAP-70 

TagRFP and utilized a live cell system using antibody coated coverslips and TIRF imaging in 

conjunction with the center for biological imaging (CBI) at the University of Pittsburgh.  Using 

TIRF we would be able to detect at a depth of only 100nm from the coverslip, or where the 

microclusters would form with little background noise.  The ZAP-70 microclusters were 

consistent with other reports in the literature with well defined, immobile peripheral 

microclusters and along the actin cytoskeleton.  While there certainly might be some interaction 

between Tim-1 and ZAP-70 at the center of the cell, the majority of microclusters, particularly 

the peripheral microclusters where signaling is thought to occur, do not co-localize (Fig. 2-

5A/B). Furthermore, the pattern of Tim-1 microclusters is not reminiscent of two well-

characterized microclusters, ZAP-70 and SLP-76.  Tim-1 microclusters do not have the same 

distinct peripheral microclusters that form along the lamellipodia as it spreads along the antibody 

coated slides (Fig. 2-5, Movie 2-1).  Also, the Tim-1 microclusters did not appear to be 

consistent with the immobile pattern of ZAP-70 microclusters or the movement of SLP-76 
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microclusters (98).  Rather, some Tim-1 clusters appeared to flit in and out of the field, which 

may be consistent with endocytosis (Movie 1). 

 

Figure 2-5. Tim-1 microclusters appears to be endocytic 

(A) Still images from Jurkat T cells co-transfected with Tim-1-GFP and ZAP-70-TagRFP were 

allowed to settle on anti-TCR/CD28 coated slides and imaged with TIRF microscopy in a 37ºC 

chamber.  (B) Montage of still images from the TIRF live cell imaging. 
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2.4.5 ZAP-70 microclusters move with anti-Tim-1 antibody co-stimulation  

Since stimulation by ligands is required for CD28 localization to the IS, we postulated 

that co-stimulation with anti-Tim-1 could also influence Tim-1 microclusters.  Using TIRF 

imaging, we imaged as Tim-1 GFP and ZAP-70 TagRFP co-transfected cells settled on 

coverslips coated with anti-TCR/CD28/Tim-1 (3B3).  The Tim-1 microclusters were similar to 

stimulation without anti-Tim-1.  Surprisingly, in this small subset of experiments (n=2), the 

ZAP-70 microclusters did not remain immobile on the actin cytoskeleton but rather appeared to 

flit in and out of focus (Fig. 2-6 and Movie 2). While co-stimulation with anti/TCR/CD28/Tim-1 

does not stabilize Tim-1 microclusters, it does destabilize ZAP-70 microclusters. 

 

Figure 2-6: ZAP-70 microclusters do not remain immobile on anti-TCR/CD28/Tim-1 

stimulation 

Still images from Jurkat T cells co-transfected with Tim-1-GFP and ZAP-70-TagRFP were 

allowed to settle on anti-TCR/CD28/Tim-1 (3B3) coated slides and imaged with TIRF 

microscopy in a 37ºC chamber. 
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2.4.6 Tim-1 is excluded from the immunological synapse 

To define patterns of Tim-1 localization on T cells, we transfected Tim-1 into the murine Th2 

line D10, which does not expresses endogenous Tim-1 (33). In contrast to studies that reported 

predominantly intracellular Tim-1 in non-T cells (45), we found Tim-1 diffusely expressed on 

the surface of resting T cells (Fig. 2-7A). However, when Tim-1 expressing T cells are activated 

by antigen loaded APCs, the pattern of Tim-1 localization is altered. Surprisingly, Tim-1 

concentrates in a region opposite the immunological synapse, with the latter represented by 

PKC-θ or pZAP-70 (Y319). This localization is not epitope tag-dependent, since both C- 

terminus tagged Tim1-GFP and N-terminus tagged Flag-Tim1 localize opposite, or at least 

outside, the immunological synapse (Fig. 2-7B). The majority of Tim-1 in T cell:APC conjugates 

(51.25% and 71% with Tim1-GFP and Flag-Tim1, respectively) appears in the “back” half of the 

cell, opposite, or at least away from, the immunological synapse (“anti-synapse”; Fig. 2-7C-E). 

Tim-1 was present within the IS in only 1 conjugate (1.03% of the total). This appears to be a 

general phenomenon, as Tim-1 localization on Jurkat T cells interacting with APC’s is also 

found predominantly outside of the immunological synapse (57% of conjugates; Fig. 2-7F). 
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Figure 2-7: Tim-1 re-distributes away from the immunological synapse. 

(A) Resting D10 T cells transiently co-transfected with Flag-Tim-1 and PKC-θ-GFP (green) 

were fixed, stained with anti-Flag-Cy3 (red), and visualized mid-plane by confocal microscopy. 

(B - upper panels) D10 T cells transiently transfected with Tim-1-GFP (green) were conjugated 

with conalbumin-loaded CH27 B cells. Endogenous PKC-θ was stained with PKC-θ (C-18) and 

Alexa-555-conjugated secondary antibody (red) as a marker of the IS/c-SMAC. (B - lower 

panels) D10 T cells transiently transfected with Flag-Tim1 (red) were conjugated with antigen 

loaded CH27 cells and stained with pZAP-70 and Alexa 488-conjugated secondary antibody 

(green) as a marker of the cSMAC. (C) Additional D10 T cell:APC conjugates showing the 
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exclusion of Tim1-GFP from the IS. (D) Quantitation of the phenotype of Tim-1 GFP 

localization in D10:CH27 conjugates (n=66) from 15 experiments or (E) Flag-Tim-1 in 

D10:CH27 conjugates (n=31) from 6 experiments. (F) Quantitation of Tim-1 localization on 

Jurkat T cells making synapses with superantigen-loaded Raji B cells. (F, bottom) Schematic of 

system used to score conjugate phenotypes. 

 

To further demonstrate that Tim-1 localizes predominantly away from the cSMAC, we 

performed live cell microscopy. Again, Tim-1 moved away from the nascent ZAP70-containing 

immunological synapse (Fig. 2-8A and Movie 2-3). We also utilized a more reductionist system 

to examine the effect of anti-TCR and –CD28 on Tim-1 localization. Thus, Jurkat T cells 

expressing Tim1-GFP and ZAP70-TagRFP were mixed with latex beads coated with anti-

CD3/CD28 antibodies. Here we observed that Tim-1 initially appears to concentrate near the 

bead along with ZAP-70. However, over time, most Tim-1 moves away from the beads (Movie 

2-4). Overall, the pattern of Tim-1 localization is reminiscent of the distal pole complex (74).  

Some proteins require the expression of their ligands on the APC in order to localize 

towards the IS. For instance, CD28 only localizes to the cSMAC in the presence of APCs 

expressing of one of its ligands - CD80 or CD86 (99). In agreement with the importance of 

ligands in receptor localization, it has been shown that Tim-1 faces apoptotic cells bearing one of 

its ligands, i.e. phosphatidylserine (58). We tested whether the APCs used in our system contain 

a ligand for Tim-1. Variable results were obtained when probing for expression of known ligands 

for Tim-1, including Tim-1 itself and Tim-4, on the APCs that we employed, CH27 and Raji 

(Fig. 2B and data not shown). While Tim-4 was consistently not detected on CH27 cells, Tim-1 

staining was more variable. We did confirm that both types of APCs used in our studies express 
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one or more surface ligands for Tim-1, as evidenced by binding of Tim1-Fc to the surface of the 

APCs (Fig. 2C). Furthermore, Tim1- Fc binding to these cells was abolished in the presence of 

EDTA, demonstrating that Tim1-Fc binding to this/these still-undefined ligand(s), like the 

known Tim-1 ligands, requires divalent ions (46, 56). This finding is not entirely surprising since 

unidentified Tim-1 ligands have been suggested to exist in a previous study (128). Thus, 

although known Tim-1 ligands (Tim-1/Tim-4) may or may not be expressed on the surface of the 

APCs used in our studies, one or more Tim-1 ligand(s) are present. Interestingly, this still does 

not result in Tim-1 localization towards the IS. 
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Figure 2-8: Tim-1 is excluded from the IS despite Tim-1 ligand(s) on the APC. 

(A) Jurkat T cells transiently transfected with Tim-1-GFP (green) and ZAP70-Tag-RFP (red) 

were incubated with Raji cells pre-loaded with 1 mg/mL SEE and stained with Cell Tracker Blue 

(blue). Cells were incubated in a heated chamber for live cell imaging. (B) CH27 cells were 

stained with anti-Tim-1 (left) and anti-Tim-4 (right) antibodies and secondary antibody and 

analyzed by flow cytometry. (C) The presence of Tim-1 ligand(s) on CH27 (upper panels) and 
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Raji (lower panels) B cells was revealed by staining with Tim1-Fc and secondary antibody, in 

the absence (left) or presence (right) of EDTA. 

2.4.7 Structural requirements for proper Tim-1 localization 

Next, we determined the elements necessary for Tim-1 localization away from the IS. During 

conjugate formation, many proteins depend on motifs found in the cytoplasmic tail for proper 

localization. For instance, CD28 requires Y188 in its cytoplasmic tail for localization towards the 

IS (129). Likewise, CD43, which moves opposite the immunological synapse and to the distal 

pole complex, requires its cytoplasmic tail for this localization (76). Specifically, CD43 requires 

a membrane-proximal positively charged amino acid cluster (KRR) in its cytoplasmic tail for 

ERM binding and distal pole complex localization (78). ERM family proteins are necessary for 

driving certain proteins, such as CD43 and Rho-GDI, towards the DPC (76, 130). Intriguingly, 

we noted a similar sequence in the juxtamembrane region of the Tim-1 cytoplasmic tail – a KRK 

motif at residues 244-246.   

To determine the intrinsic requirements for Tim-1 exclusion from the IS, we examined 

the effect of three constructs on Tim-1 localization. Specifically, we tested the effect of Tim-

1Y276F, a cytoplasmic tail truncation (Tim-1del.cyto), and Tim-1 244-246 KRK-QGQ (Tim-1QGQ) 

on Tim-1 localization (Fig. 2-9A). As shown previously by our group, Y276 is critical for Tim-1 

co-stimulatory function (33). However, the Tim-1Y276F mutant construct still appears to localize 

opposite the immunological synapse (Fig. 2-9B). To quantify the location and extent of spread of 

Tim-1 we examined two parameters. First, to determine the distance of Tim-1 in relation to the 

IS of T cell:APC conjugates, we measured the angle of Tim-1 from the center of the IS. Thus, if 

Tim-1 were concentrated directly opposite the synapse, Tim-1 would be 180o away from the IS. 
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Second, we measured the extent of Tim-1 spreading on the cell surface. Wild type Tim-1 is 

predominantly found in the “back” half of the cell (>90 degrees away from the synapse with a 

median of 133.3º), opposite the immunological synapse, and is fairly tightly contained (spread of 

20-180º with a median of 79.6º) (Fig 2-9B-C). Tim-1Y276F localization is similar to wild type 

Tim-1, in that in a majority of conjugates the protein is found more than 90º (median 136.6º) 

from the synapse and is spread over 20-120º with a median of 58.1º (Fig. 2-9B-C). These 

findings suggest that the majority of Tim-1Y276F is concentrated opposite the synapse. Next, a 

Tim-1 cytoplasmic tail truncation was utilized. In contrast to WT or Y276F forms of the protein, 

Tim-1 with a cytoplasmic tail truncation is more likely to be present in the front half of the cell, 

closer to the IS with a median distance from the IS of 106.5º (Fig. 2-9C). In about half of the 

conjugates analyzed, the Tim-1del.cyto construct was found in the front half of the cell (less than 

90º from the IS), and in 28% of total conjugates Tim-1del.cyto even appears to cross into the IS 

(Fig. 2-9C). 
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Figure 2-9: The cytoplasmic tail regulates Tim-1 localization relative to the IS.  

(A) Murine Tim-1 cytoplasmic tail sequence. The vertical line indicates the location of the 

truncation in the delta-cyto construct. KRK is the putative ERM binding domain; Y276 is 

underlined. (B) D10 T cells transiently transfected with either Flag-Tim1Y276F (red) or Flag-Tim-

1 cytoplasmic tail truncation (del.cyto; red) were mixed with conalbumin loaded CH27 cells 

(green). Cells were then stained with anti-Flag mAb directly conjugated to Cy3. (C) Quantitation 

of the angle from the IS to Tim-1 (top) and the extent of distribution of Tim-1 on the cell surface 

(bottom). (D - upper) Representative image of Tim-1QGQ-GFP and ZAP-70 RFP expressing D10 

cells interacting with antigen-loaded CH27 B cells. (D- lower) Quantification of Tim-1QGQ 

localization in D10:CH27 and Jurkat:Raji conjugates from 12 and 13 experiments, respectively. 

 

The greatest change in Tim-1 localization that we have observed thus far is seen when the 

positively charged, putative ERM-binding, motif in Tim-1 (244-246 KRK) is mutated. Rather 

than localizing diffusely on the surface of the T cells, Tim-1QGQ has a predominantly punctate 

(56.7% of D10 conjugates and 90% of Jurkat conjugates) appearance, consisting of mainly 

intracellular Tim-1, with some of this mutant even present in the IS (Fig. 2-9 and Movie 2-4). 

Thus, the ability of Tim-1 to bind ERM proteins appears to be important for Tim-1 localization 

distal to the IS and within the DPC.  

2.4.8 Tim-1 co-localizes with ERM proteins 

Given the dramatic effect on Tim-1 localization, we further characterized the Tim-1QGQ mutant. 

We observed that the Tim-1QGQ construct has lower surface expression than wild type Tim-1, 

even when higher concentrations of Tim-1QGQ plasmid are transfected. Although the total 
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amount of plasmid transfected is the same (10µg total), 10µg of Tim-1QGQ plasmid yields less 

surface expression than 2.5µg of WT Tim-1 plasmid (along with 7.5µg empty vector). However, 

the total amount of Tim-1QGQ protein appears to be equivalent to WT when cells are 

permeablized (Fig. 2-10 A-B). This is consistent with our imaging, wherein Tim-1QGQ is not 

highly expressed on the cell surface but appears to distribute into intracellular pools within the 

cell (Fig. 2-10 D). Further, Tim-1QGQ does not co-localize with early endosomal antigen 1 

(EEA1), suggesting that this pool of vesicular Tim-1 is not found in early endosomes (Fig. 2-10 

C). The significant amount of intracellular Tim-1QGQ suggests either that Tim-1 QGQ is rapidly 

recycled from the cell surface or that Tim-1QGQ is retained in a vesicular compartment within the 

cell. 
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Figure 2-10: A putative ERM-binding motif in the cytoplasmic tail regulates Tim-1 

localization. 

Anti-Flag staining of EV (empty vector), Flag-Tim-1, or Flag-Tim-1QGQ transfected D10 (A) or 

Jurkat T cells (B) as determined by flow cytometry. Surface staining of non-permeablized cells is 

on the left. Methanol permeabilization of T cells for intracellular Flag expression of EV (empty 

vector), Flag-Tim-1, or Flag-Tim-1QGQ transfected T cells, as determined by flow cytometry 

(right). (C) Representative image of Jurkat T cells transiently transfected with Tim-1QGQ-GFP 

(green) and co-stained for EEA1 and Alexa-555 (red) after conjugation to antigen loaded Raji 

cells from three experiments. (D) D10 T cells co-transfected with Flag-Tim1 or Flag-Tim1QGQ 

(red) and FERM-GFP (“ERM-DN”) constructs and conjugated to antigen-loaded CH27 cells 

were stained with anti-Flag-Cy3 antibody and imaged by confocal microscopy. (E) To quantify 

the ERM DN and Tim-1 localization, a ten pixel line scan was drawn along the surface of the 

cell, with the intensity of staining represented as a percentage of the maximal pixel intensity. 

 

Since the KRK sequence in the Tim-1 cytoplasmic tail represents a putative ERM 

binding motif, we wanted to determine whether Tim-1 might interact with ERM proteins. Here, 

we used an dominant negative (DN) ERM construct, containing the N-terminal FERM domain 

(from ezrin) that binds proteins with ERM-binding motifs, along with a GFP moiety, but not the 

C-terminal actin-binding domain (76). When cells are co-transfected with both Tim-1 and the 

ERM-DN, there is partial Tim-1 co-localization with the FERM-GFP (Fig. 2-10 C-D). This is 

consistent with a role for WT Tim-1 interacting with ERM proteins in the regulation of Tim-1 

localization. However, mutation of the Tim-1 KRK motif diminishes the ability of the mutant to 

interact with the FERM-GFP construct, as compared to WT Tim-1 (Fig. 2-10 C-D), providing 

further validation of a possible interaction between Tim1- and ERM family proteins. 
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2.4.9 Altering Tim-1 localization impacts its effects on early tyrosine phosphorylation 

We next determined whether Tim-1 localization affects Tim-1 co-stimulatory activity in 

conjunction with TCR and CD28. Interestingly, we were surprised to find that Tim-1QGQ 

promotes enhanced cellular tyrosine phosphorylation, as compared to wild type Tim-1 (Fig. 2-11 

A).  One of the tyrosine phosphorylated substrates induced in the Tim-1QGQ expressing cells is a 

band slightly above 50 kD.  Since this would be consistent with Src family kinases (SFK), we 

were interested in determining whether this band was a phosphorylated SFK member. Using 

antibodies against the activating tyrosine (Y416 in Src), we were able to detect increased 

phosphorylation in Tim1QGQ- expressing cells within minutes of TCR/CD28 stimulation (Fig. 2-

11 A).  Although not all tyrosine phosphorylation results in positive signaling, the increased 

phosphorylation at the activating tyrosine (Y416 in Src) in T cells expressing the Tim-1QGQ-

expressing cells suggests that Tim-1QGQ may enhance early T cell signaling. We were also able 

to visualize an increase in the inhibitory tyrosine of Lck, Y505 (Fig. 2-11 B).  Tim-1 may 

increase phosphorylation of both the activating and inhibitory tyrosines of Lck.  The net effect of 

the phosphorylation remains to be determined but could impact Tim-1 induced T cell activation. 
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Figure 2-11: Tim-1QGQ enhances early signaling events downstream of TCR/CD28 

independent of the rate of TCR internalization. 

(A) Jurkat T cells transfected with empty vector (EV), Flag-Tim-1, or Flag-Tim-1QGQ were 

stimulated with anti-TCR and anti-CD28 antibodies for the indicated times. Lysates were 

analyzed by SDS-PAGE and western blotting for pY (4G10), pSrc (Y416; analogous to Y394 in 

Lck), and b-actin. (B) Jurkat T cells were stimulated with anti-CD3 mAb for the indicated times. 

(C) CD3 expression was measured with flow cytometry and mean fluorescence intensity (MFI) 

was determined in FloJo. Dynasore (DS, 80 mM) was used to prevent clathrin-mediated 

endocytosis after TCR/CD3 crosslinking. 
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Since two previous reports demonstrated an association between Tim-1 and CD3 (34, 

63), another possible explanation for the enhanced tyrosine phosphorylation in Tim-1QGQ 

expressing cells was that Tim-1QGQ might increase the levels of surface TCR/CD3 and/or slow 

the rate of TCR/CD3 internalization. To address this possibility, we stimulated Jurkat cells 

expressing WT or mutant Tim-1 with anti-CD3 antibody, and measured the levels of CD3 

surface expression by flow cytometry. As expected, after antibody crosslinking, CD3 surface 

expression decreased over time (Fig. 5B). T cells expressing WT Tim-1 or Tim-1QGQ displayed 

equivalent rates of TCR internalization, although starting levels of TCR/CD3 varied somewhat 

(Fig. 2-11 B). Thus, impairment of TCR/CD3 down-regulation does not appear to be the 

mechanism behind the increased tyrosine phosphorylation in T cells expressing Tim-1QGQ after 

CD3 crosslinking. 

2.4.10 Tim-1QGQ is impaired in co-stimulation of inducible transcription and cytokine 

production 

Next, we examined the effects of altering Tim-1 localization on its ability to modulate inducible 

transcription and cytokine production. As we demonstrated previously, WT Tim-1 is able to co-

stimulate the activity of an NFAT/AP-1 transcriptional reporter (33, 64). However, Tim-1QGQ 

was not able to enhance NFAT/AP-1 activation in D10 cells (Fig. 2-12 A). Furthermore, while 

WT Tim-1 can enhance cytokine production, Tim-1QGQ cannot (Fig. 2-12 B-D). Consistent with 

a role for ERM protein binding to the KRK motif in Tim-1, a dominant negative ERM construct 

also suppresses the ability of WT Tim-1 to enhance transcription or cytokine production (Fig. 2-

12). These findings suggest that Tim-1 interaction with ERM proteins, with proper subsequent 
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localization of Tim-1, plays a role in Tim1-mediated transcriptional activity and cytokine 

production.  

 

Figure 2-12: Altered Tim-1 localization impacts inducible transcription and cytokine 

production. 

(A) D10 cells were transfected with an NFAT/AP-1 reporter, along with empty vector, WT or 

mutant Flag-Tim-1 in the presence or absence of ERM-DN. The next day, cells were cultured for 

six hours in the presence or absence of CD3/CD4/CD28 stimulation before assaying for 

luciferase activity. (B) D10 T cells were transfected with empty vector, WT Tim-1, ERM-DN, or 

Tim-1QGQ. Cells were stimulated with anti-CD3 or anti-CD3/CD28 antibodies for 24 hours. Cell-

free supernatants were collected and assayed for TNF-a production by ELISA. (C) D10 T cells 

were transfected with empty vector, Tim-1, ERMDN, or Tim-1QGQ. Cells were stimulated with 

anti-CD3 or anti-CD3/CD28 antibodies for 24 hours and IL-4 production was determined by 

ELISA. (D) Jurkat T cells were transfected with empty vector, Tim-1, ERMDN, or Tim-1QGQ. 
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Cells were stimulated with a-TCR or a-TCR/CD28 for 24 hours before IL-2 production was 

determined by ELISA. Data are presented as average values, +/- standard deviation, of duplicate 

samples from an individual experiment. 

2.5 DISCUSSION 

Here we have shown that, in contrast to the majority of known co-stimulatory molecules and 

TCR associated signaling molecules, Tim-1 does not form typical microclusters and does not 

localize towards the immunological synapse. Tim-1 microclusters are not localized at the 

periphery or stabilized by additional co-stimulation with integrins or anti-Tim-1 antibodies.  

Rather, surprisingly, Tim-1 is excluded from the immunological synapse in an ERM-dependent 

manner. Our structure/function studies suggest that Tim-1 exclusion from the immunological 

synapse is an active process requiring more than one step. First, the Tim-1 cytoplasmic tail 

appears to be necessary for exclusion from the immunological synapse, since a cytoplasmic tail 

truncation results in greater amounts of Tim-1 in the SMAC. Second, specific residues in the 

cytoplasmic tail (i.e. KRK) are required for proper Tim-1 localization towards the distal pole 

complex. Furthermore, concentration of Tim-1 opposite the immunological synapse towards the 

anti-synapse, or distal pole complex, appears to influence both early signaling and Tim-1 

induced enhancement of T cell function. 

Tim-1 forms tyrosine phosphorylated microclusters that are not associated with CD3 or 

ZAP-70. This is a bit surprising considering reports in the literature demonstrating an interaction 

between these proteins (34, 63). However, these punctate Tim-1 structures are consistent with 

microclusters since they are dependent on TCR/CD28 activation but cannot be stimulated by 
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integrin spreading.  The formation of Tim-1 microclusters may be dependent on Y276 in the 

cytoplasmic tail since mutation of this residue alters and restricts Tim-1 localization.  Tim-1Y276F 

localizes differently depending on antibody stimulation.  Under co-stimulation by LFA, Tim-

1Y276F microclusters localize around the edge of the cell whereas co-stimulation by anti-Tim-1 

results in Tim-1Y276F microclusters that appear to be mostly at the center of the cell.  One 

possible explanation for this is that under conditions of co-stimulation by anti-CD3/CD28 and 

LFA, the LFA-1 slows actin arrangement and traps some microclusters at the periphery.  In 

contrast, in the presence of anti-Tim-1 co-stimulation, the Tim-1Y276F microclusters are at the 

center of the cell, reminiscent of the cSMAC.  The Tim-1Y276F microclusters may be held 

centrally in order to be internalized and degraded since the Tim-1 Y276F does not signal.  More 

structure/function mutants will have to be created in order to better study the minimal domains 

necessary for signaling. 

Another interesting finding is the movement of Tim-1 and ZAP-70 with live cell imaging.  

Tim-1 does not have the same pattern of localization as other well studied signaling proteins.  

Instead of being located along the actin cytoskeleton like ZAP-70 or SLP-76, Tim-1 appears to 

have microclusters of different sizes, a central pool of microclusters, and a subset of smaller 

microclusters darting in and out of the field, which is very reminiscent of endocytosis.  This may 

align with recent reports that there is intracellular and endocytic signaling.  While some LAT 

exists in microclusters at the IS, there is also a pool of vesicular LAT that merges with SLP-76 

microclusters to enhance signaling.  The flitting Tim-1 microclusters could be working in a 

similar manner to feed into SLP-76 microclusters and enhance early signaling.  Alternatively, 

Tim-1 itself could also be influencing intracellular signaling.  Previously most if not all signaling 

was thought to occur at the cell surface and internalization was considered to be for the 
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termination of signaling.  However, signaling can be endocytic, and this endocytic signaling may 

be generating different pathways than surface interactions.  For instance, the BCR signals both at 

the cell surface and in intracellular vesicles.  Prevention of BCR internalization by dynasore 

creates a state of hyperphosphorylation of MAP Kinases and hypophosphorylation of Akt with 

subsequent disruptions in transcriptional activity (131).  Tim-1 may be working in a similar 

manner where surface signaling induces one set of signals while vesicular Tim-1 signaling 

activates a different signaling pathway.  This also fits with the Tim-1 KRK-QGQ mutation where 

this vesicular form of Tim-1 has greater tyrosine phosphorylation than wild type Tim-1.  It will 

be interesting to see whether blocking the internalization of Tim-1 with dynasore influences T 

cell activation.   

The majority of the data with stimulation by anti-TCR and/or CD28 suggests that ZAP-

70 microclusters become immobilized and form along the actin cytoskeleton.  Surprisingly, the 

addition of anti-Tim-1 to CD3 and CD28 stimulation causes the ZAP-70 microclusters to lose its 

distinct pattern of localization.  One reason for this could be that the concentration of anti-Tim-1 

antibody used to coat the slides was enough to interfere with the ability of ZAP-70 to interact 

with the anti-TCR. This could be tested by either decreasing the concentration of Tim-1 antibody 

used or by coating with equivalent amounts of an isotype control.  Alternatively, stimulation with 

Tim-1 could be causing the cytoskeleton to move and influencing the movement of ZAP-70.  

Stimulation with the high affinity Tim-1 antibody, 3B3, triggers cytoskeletal rearrangement 

whereas activation with the lower affinity antibody, RMT1-10, does not mobilize actin (34).  

Thus, determining the effect of the lower affinity anti-Tim-1 antibody on ZAP-70 localization 

may also offer insights into how Tim-1 affects ZAP-70 and the ensuing signaling. 
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We find that Tim-1 is found mostly on the cell surface of T cells in the steady state. This 

is in contrast to previously published reports suggesting that Tim-1 is maintained in a mostly 

intracellular store and only becomes localized to the cell surface upon activation (45). These 

discrepancies could be due to differences in cell type. Thus, the previously published report used 

HEK 293 cells and 300.19 pre-B cells. Also, since Tim-1 is a transmembrane protein, it is also 

possible that WT Tim-1 might reside in an intracellular compartment before being inducibly 

cycled to the surface, similar to CLTA-4. On T cells, Tim-1 localizes towards the interface with 

PS-expressing apoptotic thymocytes, a finding we were also able to confirm (data not shown) 

(58). However, in our studies Tim-1 does not localize towards the interface with APCs bearing 

antigenic peptide and an unidentified Tim-1 ligand. This suggests that different Tim-1 ligands 

may have distinct effects on localization. Further examination of known Tim-1 ligands, such as 

Tim-4 and HAV, may help to clarify this issue. In addition, it will also be of interest to determine 

the identity of the as-yet-unknown ligand(s) expressed on the B cell lines that we have used as 

APC’s in our studies. 

Regarding the relationship of Tim-1 to TCR/CD3, there is some discrepancy between our 

findings and the recent literature. Thus, it has been suggested that hTIM-1 co-localizes with CD3 

and ZAP-70 and that CD3 can be co-capped with mTim-1 (34, 63). These findings suggest that 

Tim-1 should be found at the IS with CD3 and ZAP-70. However, none of the previous studies 

investigated the kinetics of Tim-1 localization or the localization on T cells in conjugates with 

antigen-bearing APCs. We have shown that Tim-1 may at least partially co-localize with ZAP-70 

in the presence of TCR/CD28 coated beads (and absence of any ligand for Tim-1). However, at 

later time points Tim-1 relocates away from the antibody coated beads. In addition, we have 

obtained preliminary data indicating that Tim-1 and ZAP-70 microclusters may co-localize (data 
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not shown). This suggests that Tim-1 and ZAP-70 might interact at some early time point during 

T cell activation but that the interaction may not persist. 

The question then arises of the functional importance of Tim-1 exclusion from the IS, 

possibly at the distal pole complex in T cells, and how it might relate to Tim-1 enhancement of 

NFAT/AP-1 activation and cytokine production. If Tim-1 is truly a co-stimulatory molecule, 

then why would it be excluded from the IS? While the predominant view in the field is that the 

region opposite the IS, or distal pole complex, serves as a reservoir for molecules that inhibit 

signaling, there is evidence that the DPC may also serve as an area for active signaling. Multiple 

reports in the literature have shown that certain active signaling molecules, including PIP3, ZAP-

70, STIM1/Orai, and CD46, reside at least in part in the DPC (91-93, 132). Thus, Tim-1 may 

localize in the DPC in order to avoid being internalized and degraded at the immunological 

synapse.  This may allow for extended time to interact with other signaling molecules, and in this 

way enhance signaling. Alternatively, Tim-1 may also enhance signaling by binding inhibitory 

molecules and moving them towards the DPC and away from the positively acting signaling 

molecules found at the immune synapse. This would be in agreement with one of the Tim-1 

knockout studies suggesting that the Tim-1 deficient mice develop worse lung inflammation in a 

model of airway hyper-reactivity, although another knockout study did not demonstrate this 

(105, 106).  

Also intriguing is the paradoxical difference between early signaling events in cells 

expressing WT Tim-1 or Tim-1QGQ. Surprisingly, Tim-1QGQ-expressing cells displayed enhanced 

tyrosine phosphorylation at early time points downstream of TCR and CD28 stimulation, 

compared with the effects of WT Tim-1. This may represent phosphorylation of inhibitory 

molecules and/or increased tyrosine phosphorylation of positive signaling molecules. Also, the 
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punctate appearance of Tim-1QGQ could result from localization in endosomal compartments. 

Recent studies have highlighted the importance of endosomal vesicles carrying signaling 

molecules (e.g. LAT) into microclusters, in order to enhance the very earliest signaling events at 

the microclusters (102). Thus, vesicular Tim-1QGQ localization could enhance early signaling 

before being rapidly transmitted to the SMAC for degradation. In this way, Tim-1QGQ may 

enhance very early signaling and be degraded before having an opportunity to enhance later 

events, such as cytokine production and transcriptional activity. Alternatively, the Tim-1QGQ 

mutant may be rapidly internalized, which would explain the reduced levels of surface 

expression. Proximal to the Tim-1 KRK motif is a YILM motif that is very similar to the CTLA-

4 clathrin adaptor-binding motif (YVKM) (133). It is therefore possible that the KRK-QGQ 

mutation (and subsequent reduced ERM protein binding) exposes this YILM motif and causes 

increased internalization. This would also be consistent with the fact that the Tim-1del.cyto 

construct, in which part of this motif is truncated (before the M), is not found in an intracellular, 

vesicular, compartment. WT Tim-1 may also briefly cycle through these endosomal 

compartments before being expressed more stably at the cell surface. Since a recent report has 

suggested that internalized/endosomal TCR can signal, it is possible that the increased early 

tyrosine phosphorylation in cells expressing Tim-1QGQ arises from this internal compartment 

(103).  

Relevant for this discussion, recent reports have also implicated signaling from 

endosomes as contributing to signaling (102, 103, 134). Tim-1QGQ displays a predominantly 

punctate pattern, which is consistent with possible endosomal localization. Thus, another 

intriguing possibility is that during early signaling events, Tim-1QGQ in endosomes can enhance 

early signaling events downstream of the TCR.  
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The movement of proteins during T cell interaction with antigen presenting cells impacts 

T cell function. Here we have demonstrated that Tim-1 on T cells preferentially localizes 

opposite the immunological synapse when conjugated to antigen-bearing APCs. Our studies have 

begun to unravel the motifs and complexities involved with regulating Tim-1 localization. These 

findings may provide insight into the mechanism underlying the effects of Tim-1 on the immune 

response.  

Reference: Much on the immunological synapse work can be found published in F1000 Reports:  

Jean Lin, et al (2012) Murine Tim-1 is excluded from the immunological synapse. [v1; ref status: 

Indexed, http://f1000r.es/OaEfdg] F1000 Research, 1:10 (doi: 10.3410/f1000research.1-10.v1) 

http://f1000r.es/OaEfdg�
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3.0  TIM-1 SIGNALING 

3.1 ABSTRACT 

T cell immunoglobulin and mucin 1 (Tim-1) is upregulated on all activated T cells and delivers a 

co-stimulatory signal to influence intracellular signaling and ultimately T cell fate.  While a 

number of studies have examined the effect of Tim-1 ligation by antibodies or ligands in animal 

models of disease, the precise mechanism(s) by which Tim-1 influences T cell activation remains 

unknown.  We and others have demonstrated that Tim-1 antibody cross-linking leads to 

interaction with important signaling molecules, including CD3 and p85, as well as induction of 

NFAT/AP-1 transcription, which is dependent on Tim-1 tyrosine 276 phosphorylation.  We 

hypothesize that Tim-1 influences T cell activation by selectively recruiting different proteins 

and directing a unique signaling network after tyrosine phosphorylation.  Preliminary data 

suggests that BALB/c Tim-1 has lower levels of NFAT/AP-1 and Elk-1 activation as compared 

to C57Bl/6 levels.  However, while interfering with homotypic interactions does influence 

NFAT/AP-1 activation, Elk-1 activation may be decreased in the Tim-1H64E-expressing cells.   

Tim-1 appears to have previously unrecognized phosphorylated substrates and interacting 

proteins.  We have shown that Tim-1 may bind BAT2, translation factors, ACC1, and PLCγ1.  

We demonstrate that although Tim-1 binds PLCγ1 in a phospho-tyrosine dependent manner, 

Tim-1-expressing T cells bypass PLCγ1 to induce NFAT/AP-1 activity in a calcium-dependent 

manner.  Chemical inhibition of PLCγ decreased transcriptional activation, inhibited 
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upregulation of early markers of activation, and reduced cytokine production in D10 T cells and 

primary T cells.  This work reveals that Tim-1 has the ability to bind and activate previously 

unknown pathways. 
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3.2 INTRODUCTION 

Transmembrane immunologlobulin and mucin-1 (Tim-1) is expressed by multiple cells of the 

immune system and has the ability to modulate immune function.  Tim-1 is the first member of a 

family of Tim genes, which consists of eight putative members in mice with three human 

orthologs (1).  Tim-1 initially garnered interest as a putative asthma susceptibility gene and 

multiple studies have demonstrated a role for Tim-1 in the AHR response (2, 32, 35-37, 40).  

However, the role of Tim-1 has expanded to include modulation of EAE, influenza, rheumatoid 

arthritis, atopic disease, and allograft tolerance (25, 34, 54, 135, 136).  Most of these studies 

attribute the ability of Tim-1 to mediate disease and immune function to its effects on T cells, 

specifically by influencing T cell activation and cytokine production.    

Ligation of Tim-1 either by anti-Tim-1 mAb or by its ligands activates T cells, enhances 

T cell proliferation, and may skew T cell differentiation.  Tim-4 stimulation of T cells, either by 

Tim-4 Ig or Tim-4 coated beads, is also able to boost T cell proliferation by increasing T cell 

division, phosphorylating Akt, and by upregulating the anti-apoptotic factor Bcl-2 (12, 13).  

However, treatment with very low doses of Tim-4 can lead to inhibition of T cell proliferation 

(12).  Treatment with a high affinity anti-Tim-1 antibody, 3B3, results in hyperproliferation of T 

cells in vitro as well as the production of specific cytokines in vivo and ex-vivo.  For instance, in 

an airway hyperreactivity model, treatment with 3B3 enhances IL-4 production in vitro but IL-4, 

IL-10, and IFN-γ ex vivo (2).  In a cardiac transplant model treatment with the same antibody 

resulted in enhanced IFN-γ and IL-17 production, but decreased IL-4 and “deprogramming” of 

regulatory T cells (41).  Further, in another transplant model of islet cells, use of a lower affinity 
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anti-Tim-1 antibody, RMT1-10, led to increased IL-4 production and enhanced Treg function 

(42).  These paradoxical effects by both Tim-1 ligands and antibodies demonstrate the need for a 

better understanding of the mechanistic basis underlying Tim-1 function.  Better understanding 

of protein-protein interactions after Tim-1 ligation may lead to important information on Tim-1 

mediated signaling, and greater knowledge of the biology underlying Tim-1 function and 

immune modulation. 

The extracellular domain of Tim-1 contains an IgV domain, a heavily glycosylated mucin 

domain, and a stalk domain.  This portion of Tim-1 is where ligand binding occurs and 

polymorphisms in the mucin domain have been associated with altered susceptibility to asthma.  

Characterization of the TIM family structure has led to new avenues for investigation of 

downstream biochemical pathways.  Specifically, Santiago et al. revealed that neighboring cells 

can have homophilic TIM-1:TIM-1 binding from intermolecular surface reactions between the 

cell-surface receptors on opposite cell surfaces.6  This could be of potential biologic relevance 

because the homophilic binding is conserved in humans.  Further, it was found that His67 and 

Glu67 of the TIM-1 DE loop were important for TIM-1:TIM-1 and TIM-1:TIM4 binding.  A 

mutation of the histidine at position 64 to glutamic acid led to significant reductions in TIM-

1:TIM-1 binding as well as decreased levels of TIM-1:TIM-4 binding. 6  Based upon these 

observations and previous work from the laboratory, we investigated whether structural 

mutations in the TIM-1 DE loop, particularly from histidine at position 64 to glutamic acid 

(H64E), will result in functional alterations in signaling pathways through NFAT/AP-1 and Elk-

1.  Furthermore, polymorphisms in the mucin domain of mice and humans has been shown to 

influence susceptibility to asthma.  Thus, we examined the effect of Tim-1 with differences in 

the mucin domain on transcriptional activity. 
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Despite the plethora of knowledge on Tim-1’s effects on T cell function, the mechanisms 

by which Tim-1 is able to modulate T cell function is limited.  In particular, the intracellular 

signaling pathways responsible for mediating signaling downstream of Tim-1 activation are 

relatively unknown.  One study with hTIM-1 demonstrates that TIM-1 associates with CD3 and 

PI3K and induces phosphorylation of ZAP-70 and Itk (63).  Work from our lab has shown that 

overexpression of Tim-1 is capable of enhancing NFAT/AP-1 activity and IL-4 production 

downstream of TCR stimulation (33).  Indeed, Tim-1 appears to function in a co-stimulatory 

manner since activation of NFAT/AP-1 is further enhanced in the presence of both TCR and 

CD28 (33).  Structure/function studies have demonstrated that the cytoplasmic tail of Tim-1 is 

necessary for signaling, and specifically that Y276 contained therein is required for NFAT/AP-1 

activation(33).  We have demonstrated that the cytoplasmic tail of Tim-1 is phosphorylated in an 

Lck-dependent manner and that the p85 subunit of PI3K binds the Tim-1 cytoplasmic tail (64).  

Tim-1 signals through PI3K in order to enhance early markers of activation, including CD25 and 

CD69(64).  Supporting a role for PI3K in Tim-1 function, a study using human Tim-1 

demonstrates an association between Tim-1 and PI3K (63).  Tim-4 Ig treatment also resulted in 

increased phosphorylation of Akt as well as of Erk1/2 and LAT (13).  However, not all Tim-1 

ligands have the same effect on T cell activation.  In contrast, Hepatitis A Virus (HAV) binding 

of TIM-1actually inhibits Akt phosphorylation and blocks Treg function (121).  Discerning the 

different effects on T cell signaling induced by the various anti-Tim-1 antibodies and ligands 

might enhance our understanding of Tim-1 function and lead to better avenues to pursue research 

and treatment options. 

Proximal T cell signaling is enhanced by the formation of a “signalosome,” or complex 

of molecules recruited to the plasma membrane.  Previous work has described the importance of 
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the conserved Y276 residue in the Tim-1 cytoplasmic tail in signal transduction downstream of 

TCR/CD28 co-stimulation(33).  PI3K and CD3 have been shown to be associated with Tim-1 in 

both murine and human systems (34, 63, 64).  However, more of the specific signaling proteins 

interacting with the Tim-1 cytoplasmic tail forming the Tim-1 signalosome upon T cell 

activation remain to be unidentified.  Thus, we sought to identify and validate proteins 

interacting with the Tim-1 cytoplasmic tail in order to determine their impact on Tim-1 mediated 

signaling. 

In this chapter we examined signaling downstream of Tim-1 after its ligation by 

antibodies or ligands.  We also identified molecules interacting with the Tim-1 cytoplasmic tail 

that might be involved in mediating signaling downstream of TCR and CD28 stimulation.  We 

determined that different anti-Tim-1 antibodies can induce different patterns of phosphorylation 

and that incubation of Tim-1-expressing cells in the presence of co-stimulation by CD3 and 

CD28 with a Tim-1 ligand, PS, may enhance phosphorylation of Akt and ERK1/2.  We identified 

several potential binding partners, including translation factors and PLCγ1.  Surprisingly, we 

determined that ectopic Tim-1 expression in Jurkat and D10 T cells enhances NFAT/AP-1 and 

Elk-1 transcriptional activation in a TCR/CD28-dependent but PLCγ1-independent manner.  This 

effect requires Ca2+ but does not require Akt and Vav1.  Interestingly, Jurkat T cells express 

PLCγ2, which may help compensate for loss of PLCγ1.  Consistent with this, blocking total 

PLCγ activity with pharmacological inhibitors inhibited transcriptional activation, blocked 

markers of early activation, and decreased cytokine production in D10 and primary T cells.  This 

study demonstrates the complexity underlying Tim-1 signaling and suggests new avenues to 

explore non-traditional mechanisms/molecules for inducing T cell activation. 
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3.3 MATERIAL AND METHODS 

Cell lines and reagents 

Jurkat, J.Vav, and D10 T cell lines were used and cultured as previously described (123). Jγ and 

JγWT cells were purchased from ATCC and maintained in RMPI supplemented with 5% BGS 

and 1% penicillin and streptomycin.   

The following antibodies and reagents were used: anti-Tim-1 antibodies-3B3 (R. Dekruyff), 

RMT1-10 (e-bioscience), 5G5, 5F12, 4H10, 4F12 (V. Kuchroo), anti-phosphotyrosine 4G10 and 

PY20 (Millipore), Horseradish peroxidase (HRP)-conjugated anti-mouse and protein A (GE 

Healthcare), M2 anti-flag (Sigma Aldrich), pAkt (Biosource), pERK1/2 t202/Y204 (BD 

biosciences), pp38 (BD biosciences), EIF4G (Cell Signaling Technologies), RasGap (Millipore), 

Fyn (Millipore), PLCγ1 (Millipore), phospho-PLCγ1 Y783 (BD biosciences), pSrc Y416 (Cell 

Signaling Technologies), anti-human CD3 (Becton Dickinson), mouse CD3 and CD28 (BD 

Pharmingen), human CD28 (Life Technologies), Vav1 (Millipore), PLCγ2 (Santa Cruz), CD25-

Fitc (ebiosciences), CD69-APC (ebiosciences), anti-TIM-1 (Telos) directly conjugated to a Cy2 

donkey anti-rat secondary 

Reagents: PMA, ionomycin, sodium orthovanadate, aprotinin, leupeptin, pepstatin, 4-(2-

aminoethyl)benzene sulfonyl fluoride (AEBSF), and U73122 were all from (Calbiochem/EMD 

Biosciences), neomycin (Sigma), , Tim-1 Fc (eBiosciences), anti-TCR antibody C305 (Harlan), 

PLCγ1 smartpool siRNA (Dharmacon), Vav1 shRNA (Steve Bunnell), indo-1 am (Life 
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Technologies), Akti and Ly294002 (EMD Biosciences), IL-2, IL-4, TNFα ELISA (BD Optia), 

luciferin (Pierce), 4G10 beads (Millipore) 

 

DNA constructs.   

Histdine-64 of TIM-1, Flag-TIM-1 (B6), and Flag-TIM-1 (Balb/c) was mutated to a glutamic 

acid with the QuikChange site-directed mutagenesis kit (Stratagene).  All DNA constructs were 

verified by automated DNA sequencing. 

 

Western Blot 

20x106 D10 or Jurkat T cells were transfected with empty vector or Tim-1.  Cells were rested for 

16-18 hours before 1.5x106 cells were treated with anti-Tim-1 antibodies in the presence or 

absence of CD3/TCR and CD28 co-stimulation.  Cells were then lysed using 1% NP-40 lysis 

buffer in addition to protease and phosphatase inhibitors: beta-glycerophosphate, sodium 

fluoride, sodium orthovanadate, AEBSF, aprotinin, leupeptin, pepstatin (Calbiochem/EMD 

Biochemicals).  Lysates were run on a 10% SDS-PAGE gel before being transferred to PVDF 

membrane, blocked in 4% BSA in TBS-Tween for one hour, blotted with primary antibody 

overnight, washed three times, and incubated with secondary antibody for one hour.  Super-

Signal Pico ECL (Pierce) was used to develop the blots and images captured by a Kodak Image 

Station 4000MM or by film. 

 

Peptide pull down 

10 x106 Jurkat cells were lysed with NP-40 lysis buffer with protease and phosphatase inhibitors, 

including sodium orthovanadate, aprotinin, leupeptin, pepstatin, 4-(2-aminoethyl)benzene 
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sulfonyl fluoride, NF, and BGP.  These lysates were then incubated with a biotinylated 13aa 

peptide (RAEDNIYIVEDRP) of the Tim-1 cytoplasmic tail or a biotinylated control peptide with 

or without five minutes of pervanadate stimulation. The biotinylated 13 aa Tim-1 peptide was 

generated as described (64).  Interacting proteins were immunoprecipitated by tumbling with 

streptavidin beads for 4 hours and run on an SDS-PAGE gel.  Bands pulled down by the Tim-1 

peptide but not the control peptide were excised and the proteins were indentified by mass 

spectrometry by ProtTech.  

 

IP (4G10 or Flag) and Silver Staining 

10-20x106 empty vector or Tim-1 transfected D10 cells stimulated by CD3/4/28 (TCR) or anti-

Tim-1 antibodies.  Cells were then lysed as described above, and lysates were precleared with 

20ul of Protein G beads for one hour before being immunoprecipitated for four hours with 20ul 

of directly conjugated 4G10 beads or for two hours with 15ul of M2 beads. Lysates were gently 

washed three times, 2X sample buffer (biorad) with β-mercaptoethanol was added, proteins were 

released from the beads by boiling for 5 minutes in a sand bath, and lysates run on SDS-PAGE 

gels and blotted for protein. 

 

Apoptotic Thymocyte induction  

Thymocytes were harvested from the thymi of C56Bl/6 mice.  Cells were mashed through a 

0.4µm strainer and spun down.  Red blood cells lysis (Sigma) was used to eliminate the red 

blood cells.  “Viable” thymocytes were placed on ice for four hours, and “apoptotic” thymocytes 

were incubated with dexamethasone for 4 hours at 37ºC.  PS expression was verified with 



 88 

Annexin V staining by flow cytometry on an LSR II.  “Viable” cells had less than 5% annexin v 

staining whereas “apoptotic” thymocytes were over 90% positive for annexin v.   

Empty vector or Tim-1 with or without NFAT/AP-1 luciferase reporter transfected D10 

or Jurkat T cells were rested for 16-18 hours before lympholyting to remove dead cells.  Then, 

different ratios of T cells and thymocytes were gently spun together for 5 minutes to allow for 

conjugation.  The cells were then used in assays for western blotting, phospho-flow, or 

NFAT/AP-1 luciferase assays. 

 

Luciferase assays 

Luciferase assays were conducted as described previously (33).  In certain cases, cells were pre-

treated with 1mM neomycin or 0.2-2µM U73122 before stimulation with anti-CD3/TCR and 

anti-CD28. 

 

Early Markers of Activation 

CD4+ T cells were isolated by negative selection (CD4+ mouse T cell isolation kit Miltenyi) from 

spleen and lymph nodes of 8-12 week old female C57Bl/6 mice.  CD4 purity was determined by 

flow cytometry and was greater than 95%.  Cells were pre-treated with anti-Tim-1 antibodies 

and/or U73122 before they were crosslinked with varying concentrations of plate bound CD3 

and CD28 as described previously (64).  16 hours after stimulation, cells were stained for CD25 

and CD69 expression. 

 

Calcium flux 
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Jγ or JγWT cells were labelled with Indo-1 (Life Science Technologies) according to 

manufacturer instructions.  Briefly, 5-10x106 cells were respuspened in 1mL of media with in 

2.5µM of Indo-1 and allowed to incubate at 37ºC for 45 minutes.  Cells were then washed two 

times with excess media and samples were resuspended at 1x106 cells/mL.  To co-stain with 

Flag, cells were stained with M2 Ab (Sigma) on ice for 20 minutes and then stained with 

secondary for 20 minutes.  Samples were read on a LSR II and data analysis completed with 

FloJo. 

 

PLCγ1 and Vav1 Knockdown in D10 cells 

PLCγ1 smartpool siRNA was purchased from Dharmacon.  D10 cells were transfected with 5µg 

Tim-1, 5µg PLCg1 siRNA, and 15µg of NFAT/AP-1 reporter.  Cells were allowed to rest for 24 

hours.  Knockdown of PLCγ1 was determined by Western Blot. Varying concentrations of Vav1 

shRNA were transfected with an NFAT/AP-1 luciferase reporter into Jγ and JγWT T cells.  

Knockdown was verified by Western Blot.  Luciferase assay was performed as described 

previously.  

 

ELISA 

Primary CD4+ T cells or Tim-1 transfected D10 cells were stimulated with varying 

concentrations of CD3 and CD28 in the presence or absence of anti-Tim-1 antibodies with or 

without U73122.  Supernatants were collected at 24 and 48 hours. 
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3.4 RESULTS 

3.4.1 Tim-1 cross-linking results in inducible tyrosine phosphorylation of downstream targets. 

Multiple reports have demonstrated that cross-linking Tim-1 by various anti-Tim-1 antibodies 

can result in skewing of T helper cell subsets and subsequent differential cytokine production 

(34, 36, 41, 42).  However, the specific proteins mediating these effects have not been 

elucidated.  To identify proteins induced specifically by Tim-1 in a non-biased manner, various 

anti-Tim-1 antibodies were used to cross-link Tim-1 on Tim-1 transfected D10 T cells in the 

presence or absence of anti-CD3, anti-CD4, and anti-CD28 co-stimulation, followed by western 

blotting for tyrosine phosphorylation (pY).  3B3 is the best studied anti-Tim-1 antibody, with 

high affinity binding to Tim-1, and is often considered to be “agonistic” (34).  4F12, 4H10, 

5F12, and 5G5 are all monoclonal anti-Tim-1 antibodies that are less well characterized.  5F12 is 

believed to act in a similar manner to 3B3, i.e. serve in an “agonistic” fashion (personal 

communication L. P. Kane and V. Kuchroo).  

The pattern of Tim-1 co-stimulation-induced tyrosine phosphorylation varies among the 

different antibodies.  For instance, blotting with PY20, an antibody specific for tyrosine 

phosphorylated proteins, revealed three bands selectively induced by anti-Tim-1 mAb 3B, a 

doublet between 204-250 kD and a single band around 75kD not found with TCR stimulation 

alone (Fig. 3-1a).  The higher molecular weight double bands are further enhanced with Tim-1 

and TCR co-stimulation.  In addition, other tyrosine phosphorylated proteins (bands between 75 

and 100kD) are also enhanced upon 3B3 plus TCR stimulation as compared to TCR stimulation 
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alone (Fig. 3-1a).  In general, anti-Tim-1 3B3 stimulation in the presence of TCR co-stimulation 

increases overall tyrosine phosphorylation.  
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Figure 3-1: Differential tyrosine phosphorylation downstream of Tim-1 antibody cross-

linking 

One million D10 cells cells were transiently transfected with Tim-1 and treated with anti-Tim-1 

antibodies 3B3 (A), 4F12 or 4H10 (B), or 5F12 or 5G5 (C) in the presence or absence of 

CD3/CD4/CD28 co-stimulation. Tyrosine phosphorylation was visualized by anti-P-Tyr mAb 

PY20.  (D) One million activated T cells from C57Bl/6 spleens and lymph nodes were stimulated 

for 7 minutes with anti-Tim-1 antibodies at different concentrations as indicated (mg/mL) in the 

presence or absence of CD3/CD4/CD28 co-stimulation before blotting with anti-P-Tyr mAb 

4G10. (E) Whole cell lysates from Tim-1 transfected D10 cells stimulated by CD3/4/28 (TCR) 

or anti-Tim-1 antibodies were immunoprecipitated with 4G10 beads. Lysates were run on SDS-

PAGE gels and blotted for SLP-76. (F) Whole cell lysates from Tim-1 and CD3/CD4/CD28 

stimualted D10 cells were immunoprecipitated with 4G10 beads to purify tyrosine 

phosphorylated proteins.  The lystaes were run on SDS-PAGE gel and proteins were visualized 

by silver staining.  The selectively induced band (star) was excised and sent to ProTech for 

masss spectrometry. 

 

Reports from the literature indicate that anti-Tim-1 antibodies can impact T cell 

activation in different ways.  The best characterized cases are differences in the type of cytokines 

(Th1, Th2, or Th17) expressed from murine T cells isolated from mouse models of airway 

hyperreactivity, EAE, or transplantation that were treated with anti-Tim-1 antibodies of varying 

binding affinities and epitopes (34, 36, 42, 44, 137).  Thus, it is not surprising that the pattern of 

pY induced downstream varies with the specific anti-Tim-1 antibody used (Fig. 3-1a-d).  For 

instance, 4H10 induces bands that 4F12 does not (Fig. 3-1b).  Similarly, the pY pattern induced 

by 5F12 cross-linking is similar but not identical to treatment with 5G5 (Fig. 3-1c). In further 
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support roles for Tim-1 in differential tyrosine phosphorylation, activated primary CD4+ T cells 

were stimulated with Tim-1 specific antibodies and blotted with 4G10, another antibody specific 

for tyrosine phosphorylated proteins.  Of particular interest was the observation that “agonistic” 

Tim-1 antibodies, 3B3 and 5F12, selectively induced a band between 75-100kD, while another 

antibody, 5G5, which binds to the mucin domain of Tim-1, attenuates the signal (Fig 3-1d).  This 

suggests that characteristics of the anti-Tim-1 antibodies, such as binding affinity or specific 

epitope on Tim-1, may lead to differential downstream signaling, which may in turn impact T 

cell activation. 

We were particularly interested in identifying a particular band selectively induced by 

some, but not all, anti-Tim-1 antibodies.  Based on the molecular weight of the band at slightly 

above 75kD, we hypothesized that Tim-1 might induce phosphorylation of the adaptor protein 

SLP-76, which is known to be crucial for transducing signals downstream of TCR activation that 

leads to IL-2 production (138, 139).  Thus, we wanted to determine whether Tim-1 might 

directly recruit SLP-76 upon activation.  We were unable to detect a direct physical interaction 

between Tim-1 and SLP-76 by co-IP (Fig. 3-1e).  This could indicate that binding is weak or that 

Tim-1 and SLP-76 do not directly interact.  

In an attempt to determine the identity of the selectively phosphorylated proteins in an 

unbiased manner, we activated cells using anti-Tim-1 antibodies in the presence or absence of 

anti-TCR and anti-CD28 stimulation.  These lysates IP’ed with 4G10 beads before being run on 

a gel and silver stained in order to visualize proteins (Fig. 3-1e).  We were able to detect a band 

selectively induced between 75-100kD similar to the original anti-pY blot (Fig. 3-1d, f).  This 

band was excised, and the identity of the protein was determined by mass spectrometry.  This 

method identified Lrch3 (leucine-rich repeats and calponin homology domain containing 3), 
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which appears to have high transcript levels in T cells (Fig. 3-1f) (140).  These data suggest that 

Tim-1 may selectively induce specific proteins, such as Lrch3.  While little is known about 

mammalian Lrch3, it is highly homologous to drosophila dLrch and has been implicated as a 

cytoskeletal scaffolding protein important for cellular division (141).  Cell division is a necessary 

part of T cell activation and expansion. 

3.4.2 PS expressing thymocytes in the presence of co-stimulation may enhance pAkt and 

pERK in Tim-1 expressing T cells 

Tim-1 ligands have also been implicated in influencing cellular function.  For instance, the Tim-

4:Tim-1 interaction has been suggested to stimulate T cell proliferation and phosphorylation of 

signaling proteins (13).  However, since Tim-4 can influence the function of naïve T cells, which 

express little if any Tim-1, Tim-4 may also bind to receptors other than Tim-1.  Thus, we were 

interested in determining how another natural Tim-1 ligand, phosphatidylserine (PS), might 

impact Tim-1 enhancement of T cell activation.  Ligation of Tim-1 on NKT cells by anti-Tim-1 

antibodies, co-stimulation with α-GalCer, and PS expressing erythrocytes enhances NKT 

proliferation and cytokine production (58).  Further, blocking the PS interaction with excess 

amounts of annexin V can mitigate these effects.  In addition, although Tim-1 (Kim-1) on kidney 

cells has been shown to bind and engulf PS-expressing apoptotic cells (57), a function for Tim-1 

and PS ligation on conventional T cells remains to be elucidated.  Since Tim-1 has the ability to 

enhance NFAT/AP-1 activity, we first determined whether the Tim-1:PS interaction might also 

impact reporter activity this transcriptional response.  We stimulated D10 or Jurkat T cells with 

different ratios of either viable or apoptotic thymocytes, the later of which express high levels 

PS.  We were unable to detect enhanced NFAT/AP-1 activity in cells stimulated with anti-Tim-1 
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(3B3) alone (Fig. 3-2 A-B).  Ectopic expression of Tim-1 in the presence of anti-TCR/CD28 co-

stimulation enhanced NFAT/AP-1 activation in D10 and Jurkat T cells as has been shown before 

(Fig. 3-2 A-B).  However, surprisingly, apoptotic thymocytes incubated with anti-

CD3/CD4/CD28 stimulation in the presence of Tim-1 expressing D10 cells resulted in a drastic 

decrease in NFAT/AP-1 activation (Fig. 3-2 A).  A slight decrease in NFAT/AP-1 activation was 

seen in Tim-1 expressing Jurkat T cells incubated with apoptotic cells at the lower ratio (1 

million Jurkat T cells to 2 million apoptotic thymocytes) as compared to T cells incubated with 

viable thymocytes (Fig. 3-2 B).  However, this effect was not observed when Tim-1 expressing 

Jurkat T cells were incubated with the higher ratio of apoptotic thymocytes (Fig. 3-2 B).  These 

data suggests that Tim-1 expression on T cells in the presence of apoptotic thymocytes-PS and 

co-stimulation may affect NFAT/AP-1 transcriptional activation, depending on the ratio of T 

cells to ligand expressing thymocytes.  
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Figure 3-2: PS-expressing apoptotic thymocytes do not affect Tim-1 induce T cell activation 

D10 (A) or Jurkat (B) T cells were transfected with empty vector or Tim-1 in the presence of an 

NFAT/AP-1 reporter.  The next day, one million T cells were cultured for six to eight hours with 

the indicated ratio of viable or apoptotic thymocytes before assaying for luciferase activity. 

 

We examined the ability of Tim-1-expressing D10 T cells to broadly induce pY 

downstream in the presence of viable or apoptotic thymocytes.  Viable and PS expressing 

apoptotic thymocytes alone were unable to induce much pY.  The addition of Tim-1-expressing 

D10 cells and anti-CD3/4/28 were also unable to induce signficant pY, suggesting that activation 

may have been suboptimal.  We were unable to detect any specifically tyrosine phosphorylated 

proteins downstream of PS-expressing apoptotic thymocytes on Tim-1-expressing D10 cells, as 

compared to the viable thymocytes (Fig. 3-3 A).  Thus, unlike antibody cross-linking, the Tim-1 



 97 

interaction with PS-expressing cells did not clearly induce a particular pattern of tyrosine 

phosphorylation. 

Ectopic Tim-1 expression has been shown to augment Akt phosphorylation upon TCR 

activation.  Thus, we examined the role of PS-expressing thymocytes cultured with Tim-1 

expressing D10 cells on pAkt levels.  D10, viable, and apoptotic thymocytes alone were unable 

to induce pAkt. Incubation of D10 cells with apoptotic thymocytes, particularly at five minutes, 

was able to induce pAkt.  However, pAkt levels do not appear to correlate with PS expression, 

since both viable and apoptotic thymocytes induce phosphorylation (Fig. 3-3 B).  To examine 

Akt phosphorylation at the level of the individual cell, we also performed phospho-flow 

cytometry.  Similar to the western blot, incubation with thymocytes slightly enhanced pAkt 

levels.  However, this increase in pAkt did not appear to specifically depend on the presence of 

PS since both apoptotic and viable thymocytes increased phosphorylation (Fig. 3-3 C).  Since 

Tim-1 enhancement of pAkt is increased by co-stimulation(64), we wanted to determine the 

effect of PS on Tim-1-expressing cells with co-stimulation.  Another Tim-1 ligand, Tim-4, has 

been shown to induce pERK1/2 (13).  Thus, we investigated whether Tim-1 and PS-thymocyte 

expression in the presence of anti-CD3 and anti-CD28 co-stimulation could influence pAkt and 

pERK1/2 levels.  Interestingly, incubation of Tim-1-expressing D10 cells with PS-expressing 

apoptotic thymocytes and TCR co-stimulation resulted in enhanced pAkt and pERK1/2 (Fig. 3-3 

D-F).  Thus, the data suggest that interaction of Tim-1 with PS-expressing thymocytes might 

enhance pY of specific proteins. 

  



 98 

 

Figure 3-3: PS-expressing apoptotic thymocytes do not affect Tim-1 induce T cell activation 

(A) Tim-1 (Balb/c) transfected D10 cells were briefly centrifuged with viable or apoptotic 

thymocytes in the presence or absence of TCR (CD3/CD4/CD28) stimulation for the indicated 

times.  Lysates were separated by SDS-PAGE electrophoresis before transferring and blotting for 

anti-pY (4G10).  Tim-1 transfected D10 cells were incubated with viable or apoptotic 

thymocytes for the indicated times before phosphorylation of Akt was determined by 

immunoblotting (B) or phosphoflow (C). (D) Tim-1 transfected D10 cells were incubated with 

viable or apoptotic thymocytes in the presence or absence of TCR (CD3/4/28) stimulation.  

Lysates were blotted for pAkt (E) and pERK1/2 (F) and net intensity of the bands was quantified 

by densitometry on the Kodak image station.  Cells numbers are indicated in the millions.  
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3.4.3 Homotypic Tim-1 interactions do not affect NFAT/AP-1 but enhance Elk-1 activation 

To determine whether homotypic Tim-1 interactions influence NFAT/AP-1 activation, Jurkat 

and D10 T cells were transfected with vector, TIM-1, or TIM-1H64E in the presence or absence of 

TCR/CD28 co-stimulation.  The D10 and Jurkat T cells did not demonstrated significant 

differences in reporter activity between wild type and Tim-1H64E mutants, although there may be 

a slight (but not statistically significantly) increase in NFAT/AP-1 activation in the C57Bl/6 

Tim-1 (Fig. 3-4 A/B).  Interestingly, Elk-1 activation did not recapitulate NFAT/AP-1 activity.  

In Jurkat T cells, although higher than empty vector transfected cells, the Elk-1 reporter activity 

was decreased in the presence of the Tim-1H64E mutant as compared to wild type in the presence 

of TCR/CD28 co-stimulation (Fig. 3-4 B).  This suggests that homotypic interactions are 

dispensable for NFAT/AP-1 activation but may be involved in enhancing Elk-1 activity. 
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Figure 3-4: Homotypic interactions do not effect NFAT/AP-1 activation 

Tim-1 and Tim-1 H64E constructs were transfected with NFAT/AP-1-luciferase into (A) D10 

(n=2) and (B) Jurkat (n=2) T cells.  (C) Tim-1 and Tim-1 H64E were transfected for Elk-1 into 

Jurkat cells (n=1).  
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3.4.4 Tim-1 on BALB/c cells have reduced transcriptional activation  

The original description of the TAPR region suggested that polymorphisms in Tim-1 might 

account for the differences noted in AHR susceptibility.  It is well accepted that BALB/c mice 

are more prone to Th2 responses and exacerbation of AHR, whereas C56Bl/6 mice are more 

resistant to AHR.  These mice have differences in their Tim-1 sequences.  In particular, Tim-1 in 

HBA mice, where the TAPR region was cloned, is identical to Tim-1 in C57Bl/6 and contains a 

15 amino acid deletion as compared to BALB/c mice (27, 33).  Thus, we postulated that strain 

dependent differences in Tim-1 function might exist.  In support of this hypothesis, although not 

yet statistically significant, BALB/c T cells trended towards decreased Tim1-dependent 

NFAT/AP-1 and Elk-1 activity as compared to C57Bl/6 T cells cells (Fig. 3-4 C).  More 

experiments will be necessary to confirm this finding. 

3.4.5 Identification of potential Tim-1 binding partners  

We have hypothesized that additional signaling proteins interacting with the Tim-1 cytoplasmic 

tail to form the Tim-1 “signalosome” upon T cell activation remain unidentified.  Initial work 

from this lab utilized an SH2 domain array to identify binding partners, and previous work has 

described the importance of Y276 in the Tim-1 cytoplasmic tail for signal transduction 

downstream of TCR/CD28 co-stimulation (33, 64).  While published work has confirmed that 

Tim-1 binds p85 and Tim-1 signaling is mediated through PI3K, other proteins were identified 

but not validated, including Fyn and RasGap (64).  Further, we used the scansite program to 

indicate possible Tim-1 binding partners based motifs and sequences of the cytoplasmic tail 
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(142).  This method identified PLCγ1 as a potential binding partner (Fig. 3-5 B).  PLCγ1 is an 

attractive target due to its established role in transducing early T cell signals (62, 143, 144).  

To define additional binding partners, we employed a peptide pull down approach using 

the same Tim-1 cytoplasmic tail peptide used in the SH2 domain array (64).  Using a previously 

described biotinylated 13aa segment of the Tim-1 cytoplasmic tail containing a phosphorylated 

Y276, we detected two protein bands associated with the Tim-1 peptide but not a control 

biotinylated peptide (Fig. 3-5 A).  These bands were excised, and proteins were identified by 

mass spectrometry.  These proteins included HLA-B associated transcript 2 (BAT2), Acetyl-

CoA carboxylase 1 (ACC1), and a number of translation factors (Fig. 3-5 A/B).  This suggests 

that Tim-1 could potentially play a role in activating cellular processes within T cells in 

preparation for T cell activation. 
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Figure 3-5: Identification of binding partners to Y276 region of the Tim-1 cytoplasmic tail 

(A) Jurkat cell lysates were incubated with a biotinylated control peptide or a biotinylated 13 aa 

peptide of the Tim-1 cytoplasmic tail containing a phosphorylated Y276.  Cells were stimulated 

with or without pervanadate for 5 minutes.  Interacting proteins were immunoprecipitated with 

streptavidin beads and run on an SDS-PAGE gel.  The indicated bands were excised and proteins 

sent to ProTech for identification by mass spectrometry. (B) Chart detailing putative Tim-1 

interacting partners and method of identification.  (C) 15-25 million Flag-Tim-1 transfected D10 

cells were lysed, IP’ed with anti-M2 (Flag), run on gel, and blotted with the indicated antibodies. 

(D-E) Determination of PLCγ1 phosphorylation (Y783) or ERK1/2 phosphorylation in primary 

cells stimulated with TCR (CD3/4/28), anti-Tim-1, or TCR and anti-Tim-1.  (D-top) pPLCγ1 in 

first round Th1 induced Balb/c T cells.  (D-bottom) pPLCγ1 and pERK1/2 induced within 48 

hours of TCR/CD28 activated splenic T cells.  (E) Immunoblotting for pPLCγ1 or pERK1/2 

from restimulated T cells isolated from Balb/c spleens and lymph nodes. 

3.4.6 Validation of Tim-1 binding partners 

We next sought to validate the interaction between Tim-1 and its putative binding partners based 

on the predictions above.  We performed Co-IPs on promising candidates to confirm their 

interaction with Tim-1.  D10 cells transfected with Flag-Tim-1 were immunoprecipitated with 

M2 (α-Flag) antibody and blotted to detect interacting proteins.  Flag Tim-1 is challenging to 

detect in whole cell lysates but clearly visible after IP (Fig. 3-5 C).  Among the proteins 

identified included multiple translation factors and a protein involved in cellular metabolism.  

Specifically the mass spectrometry revealed translation factors, such as EIF4A and EIF4G, and 
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the metabolic factors ACC1 (Fig. 3-5 A).  Although most research has focused on transcription 

factors and the genes they regulate in lymphocyte activation, T cells must also undergo increased 

aerobic and anaerobic glycolysis and translation of proteins to support cellular activation (145).  

Thus, we were interested in the potential interaction between Tim-1 and the translation factor 

EIF4G.  However, we were unable to reliably detect an interaction between Tim-1 and EIF4G 

(Fig. 3-5 C).   

Several putative Tim-1 interacting proteins were identified by SH2 domain array.  A 

particularly intriguing candidate was Fyn, which is member of the Src family of tyrosine kinases 

(SFK) and is important for early phosphorylation events downstream of TCR/CD3 (146).  Our 

lab previously demonstrated the importance of another SFK, Lck, in signal transduction 

downstream of Tim-1 in T cells (64, 147).  Further, another lab demonstrated that Fyn interacts 

with phosphorylates Tim-1 in B cells (147).  Thus, we hypothesized that Fyn might also interact 

with Tim-1 in T cells and aid in the transduction of downstream signals.  However, we were 

unable to consistently observe Tim-1 and Fyn binding by Co-IP. Fyn appears to weakly interact 

with Tim-1 but this interaction is not stimulation dependent (Fig. 3-4 C).  Other experiments did 

not suggest an interaction between Tim-1 and Fyn (data not shown).  However, lack of 

detectable physical interaction does not necessarily rule out the ability of PS through Tim-1 to 

activate or phosphorylate of Fyn.   Another signaling protein identified by SH2 domain array was 

RasGap, a negative regulator of the Ras small G protein.  However, we were unable to confirm 

interaction of RasGap with Tim-1 by co-IP or co-localization, possibly because of the quality of 

the RasGap antibody (data not shown).  These data indicate that there is not a strong interaction 

between Tim-1 and either Fyn or RasGap, although we cannot rule out weak or more transient 

interactions.   
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Potential interaction of Tim-1 with PLCγ1 was suggested through sequence homology by 

Scansite (142).  PLCγ1 is the predominant PLCγ isoform in T cells and is an important part of 

the early T cell signalosome.  PLCγ cleaves PIP2 into IP3 and DAG (62).  This allows for 

NFAT/AP-1 transcription factor activation, which Tim-1 has been shown to enhance in a Y276-

dependent manner.  Thus, we hypothesized that Tim-1 might interact with PLCγ1 in order to 

mediate Tim-1 downstream effects.  We were able to demonstrate basal Tim-1 binding to 

PLCγ1, which was enhanced by stimulation with pervanadate (Fig. 3-5 C).  This is indicative of 

a Tim-1 and PLCγ1 interaction that is strengthened by phosphorylation. 

We were interested in whether ligation of Tim-1 in activated primary T cells could induce 

phosphorylation and activation of PLCγ1.  In two experiments, stimulation with anti-Tim-1 

antibody 3B3 induced increased phosphorylation of PLCγ1.  This was further enhanced by co-

stimulation with anti-CD3/CD28 (Fig. 3-5 D).  In the majority of experiments (n>3), we were 

unable to induce PLCγ1 phosphorylation by anti-Tim-1 stimulation alone, although there might 

still be increased PLCγ1 phosphorylation in anti-TCR/CD28 and anti-Tim-1 co-stimulated cells 

(Fig. 3-5 E).  Alternations in pERK1/2 levels are more difficult to detect in these experiments, 

since the baseline levels are so high (Fig. 3-5 D/E).  This all suggests that Tim-1 enhances 

PLCγ1 phosphorylation in a CD3/CD28-costimulation dependent manner. 

3.4.7 Tim-1 interaction with PLCγ1 depends on the Tim-1 cytoplasmic tail  

Next, we further characterized the structural elements necessary for the Tim-1 and PLCγ1 

interaction.  Using Tim-1Y276F and Tim-1∆Cyto constructs, we observed that binding was at least 

partially abrogated by truncation of the cytoplasmic tail and by mutation of Y276 (Fig. 3-6).  



 107 

While there still appears to be some binding of PLCγ1 to the Y276 mutant, the levels are lower, 

particularly when compared to the amount of total Tim-1 protein pulled down.  This suggests 

that the majority of Tim-1 binds to PLCγ1 in a cytoplasmic tail dependent manner.   

 

Figure 3-6: Tim-1 binding is decreased in when Y276 in the cytoplasmic tail is mutated 

15-25 million Flag-Tim-1 transfected D10 cells were lysed, IP’ed with anti-M2 (Flag), run on 

gel, and blotted for PLCγ1 and Flag.  This is a representative blot from three separate 

experiments. 

3.4.8 Tim-1 induction of transcriptional activity depends on TCR and CD28 co-stimulation but 

is independent on PLCγ1 

To determine the functional consequences of Tim-1 signaling through PLCγ1, we tested the 

ability of Tim-1 to modulate transcriptional activity in the absence of PLCγ1.  PLCγ1 is an 

important signaling molecule in transducing signals downstream of TCR/CD28 ligation through 

its products DAG and PI(4,5)P2.  DAG activates PKC-θ and through various steps leads to AP-1 

activation while PI(4,5)P2 mobilizes intracellular Ca2+ signaling leading to the induction of 
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NFAT activity.  Therefore, we hypothesized that Tim-1 would enhance NFAT/AP-1 activation 

through its interaction with PLCγ1.  First, we examined the ability of Tim-1 to signal in PLCγ1-

deficient cells.  We expressed Tim-1 in Jurkat T cells completely lacking PLCγ1 (J.γ1) and J.γ1 

T cells reconstituted with PLCγ1 (J.γ WT) together with an NFAT/AP-1 luciferase reporter.  

Surprisingly, Tim-1 expression in the presence of anti-TCR and anti-CD28 resulted in similar 

levels of NFAT/AP-1 activity in Jurkat, J.γ, and J.γ WT cells (Fig. 3-6 A).  This induction was 

dependent on co-stimulation by both TCR and CD28, since stimulation by either TCR or CD28 

alone was insufficient to induce transcriptional activity in the presence of Tim-1 (Fig. 3-7 A).  

We previously published that the ability of Tim-1 to induce NFAT/AP-1 transcriptional activity 

requires the cytoplasmic tail, specifically Y276 (33).  To better define the structural elements 

necessary for this Tim-1-dependent, but PLCγ1-independent, effect, we utilized a Tim-1 

cytoplasmic tail truncation and Y276F point mutant.  Expression of the Tim-1 cytoplasmic tail 

truncation as well as the Tim-1 Y276F mutant abrogated Tim-1-mediated induction of 

NFAT/AP-1, even in the presence of TCR and CD28 (Fig. 3-7 B).  This is consistent with the 

fact that the Tim-1 cytoplasmic tail, particularly one or more proteins interacting with Y276, is 

necessary for Tim-1 mediated enhancement of NFAT/AP-1.  Interestingly, PLCγ1 does not 

appear to be the required protein for this Tim-1 mediated transcriptional activation.  This might 

be due to compensation by other PLC isoforms or due to other compensating proteins found 

within the J.γ T cells. 
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Figure 3-7: Effect of Tim-1 through PLCγ1 on transcriptional activation 

(A) NFAT/AP-1 luciferase reporter activity in Jurkat, Jγ1 (Jurkat cells lacking PLCg1), or Jγ1 

WT (Jγ1 cells reconstituted with PLCg1) transfected with Tim-1 before activating with anti-

TCR, anti-TCR/CD28, anti-CD28, or PMA/ionomycin.  Reporter activity is expressed as a 

percentage of PMA+/-ionomycin.  (B) NFAT/AP-1 reporter activity in Jurkat, Jγ1, or Jγ1 WT 

cells transfected with empty vector, Tim-1, Tim-1Y276F, or Tim-1∆Cyto and stimulated in the 
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presence or absence of TCR and CD28.  NFAT (C), AP-1 (D), Elk-1 (E), CD28 RE (F) 

luciferase reporter activity in Jγ1 or Jγ1 WT cells stimulated with anti-TCR, anti-TCR and CD28, 

or PMA+/-ionomycin. 

 

To further assess the Tim-1 dependent but PLCγ1 independent pathways, we examined 

the effect of Tim-1 signaling through PLCγ1 on the individual components of the pathways.  

First, we examined the ability of Tim-1 to induce activation of NFAT in a PLCγ1 independent 

manner.  We overexpressed Tim-1 in PLCγ1 deficient Jurkat T cells with a pure NFAT reporter, 

which is dependent on only Ca2+ signaling.  Similar to the case with NFAT/AP-1 activation, we 

were observed PLCγ1-independent induction of NFAT in Tim-1-expressing T cells stimulated 

with both anti-TCR and anti-CD28, but not with anti-TCR alone (Fig. 3-7 C).  Next, we 

determined the effect of Tim-1 through PLCγ1 on activity of a pure AP-1 reporter.  This was 

more difficult to interpret since signal-to-noise was not optimal.  The presence of Tim-1 in the 

absence of PLCγ1 is still able to slightly enhance AP-1 activation, as compared to empty vector 

alone (Fig. 3-7 D).  Thus, the TCR/CD28 dependent, but PLCγ1 independent, effect of Tim-1 

appears to play a role in both NFAT and AP-1 separately, although the NFAT effect is more 

robust and is also more consistent with the NFAT/AP-1 effect.   

Tim-1 expression or ligation does not appear to induce NF-κB in T cells, but a role for 

Elk-1 has been previously demonstrated (Anjali de Souza’s thesis).  Thus, we investigated the 

role of PLCγ1-independent Tim-1 signaling on the MAP kinase pathway in T cells.  Ectopic 

expression of Tim-1 in Jurkat, J.γ, and J.γ WT cells resulted in induction of an Elk-1-gal4 

transcriptional reporter, which is a read-out for MPK-mediated Elk-1 phosphorylation.  This 

increase in Elk-1 reporter activity was greatest in cells stimulated with both TCR and CD28.  
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However, unlike NFAT/AP-1 transcription, the increased Elk-1 reporter induction is less 

dependent on co-stimulation, since either TCR or CD28 stimulation alone is also able to induce 

some Tim-1 dependent Elk-1 activity (Fig. 3-7 E).  This is not entirely surprising since MAP 

Kinase activation is less strictly dependent on PLCγ1 expression than NFAT/AP-1, ie. other 

pathways might compensate for Elk-1 activity, such as the Ras GTPases.  

3.4.9 Role of PLCγ1 in Tim-1 co-stimulation of D10 T cells 

We utilized pharmacological inhibition and genetic silencing to validate our work in the PLCγ1 

deficient Jurkat T cell line discussed above.  To confirm these findings, we were interested in the 

effect of PLCγ inhibitors on Tim-1 induced NFAT/AP-1 activation.  Both U37122 and neomycin 

have been shown to inhibit PLCγ activity (148-150).  While the mechanism for U73122 has not 

been fully elucidated, neomycin is believed to inhibit PLC due to its phosphatidylinositol 4,5-

bisphosphate binding affinity (150, 151).  Thus, we pre-treated Tim-1 or Tim-1∆Cyto (a control) 

expressing Jγ or JγWT cells with U73122 (0.1µM and 1µM) or Neomycin (1mM) followed by 

anti-TCR and anti-CD28 co-stimulation.  In both the Jγ and the JγWT cells, PLCγ inhibitors did 

not abrogate the ability of Tim-1 to induce NFAT/AP-1 activation upon CD3/CD28 co-

stimulation (Fig. 3-8 A).  Thus, in these experiments, chemical inhibition of PLCγ was not 

sufficient to attenuate Tim-1 and co-stimulation induced NFAT/AP-1 activity in Jurkat T cells. 

Jurkat T cells are known to have abnormalities in signaling, mostly notably increased 

pAkt due to lack of PTEN and SHIP (152, 153).  Thus, we examined the role of PLCγ1 in the 

D10 T cell line, which possesses apparently normal signaling through the PI3K pathway (123, 

125).  As anticipated, Tim-1 expression enhances NFAT/AP-1 activation in the presence of anti-
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CD3/CD4/CD28 co-stimulation.  However, treatment with the U73122 inhibitor decreases this 

effect and results in comparable levels of reporter activity between empty vector and Tim-1 

expressing cells despite CD3/CD4/CD28 co-stimulation.  Similarly, neomycin treatment also 

attenuates much of the Tim-1 and anti-CD3/CD4/CD28 co-stimulation dependent NFAT/AP-1 

activation (Fig. 3-8 B).  Thus, in contrast to Jurkat cells, ectopic Tim-1 expression in D10 cells 

even in the presence of co-stimulation cannot compensate for blockade of the PLCγ activity. 
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Figure 3-8: Effect of PLCγ inhibition on Jurkat and D10 cells 

(A) NFAT/AP-1 luciferase reporter activity in Jγ1 (left), or Jγ1 WT (right) transfected with Tim-

1 before activating with anti-TCR, anti-TCR/CD28, anti-CD28, or PMA/ionomycin.  Reporter 

activity is expressed as a percentage of PMA+/-ionomycin.  (B) NFAT/AP-1 reporter activity in 

D10 T cells transfected with empty vector and Tim-1 and stimulated in the presence or absence 

of CD3 and CD28 with or without U73122 or Neomycin treatment.  (C) NFAT-AP-1 luciferase 
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reporter activity in D10 T cells transfected with empty vector or Tim-1 and PLCγ1 siRNA was 

stimulated with anti-CD3 and CD28, or PMA+/-ionomycin in the presence or absence of 

U73122 or Neomycin.  Western blot for PLCγ1 and p85 expression in the transfrected D10 cells. 

 

To specifically examine the role of PLCγ1, we also attempted to knockdown 

PLCγ1expression in D10 cells and to determine its effect on Tim-1 influenced transcriptional 

activation.  Cells transfected with Tim-1 cDNA and the PLCγ1 siRNA were still able to induce 

NFAT/AP-1 activation, in a CD3/CD4/CD28 dependent manner, as compared to empty vector 

controls.  A caveat with the experiment was that the overall levels of reporter activity were not 

optimal, and PLCγ1 knock down was only partial (Fig. 3-8 right).  Tim-1-expressing PLCγ1 

knockdown D10 cells treated with the higher dose of U73122 had reduced NFAT/AP-1 reporter 

activity to levels comparable to empty vector.  Treatment with the lower dose of U73122 (1uM), 

or with neomycin, also decreased NFAT/AP-1 luciferase activity as compared to vehicle treated 

cells (Fig. 3-8 C).  The luciferase signal after inhibitor treatment could be lower because the 

inhibitor is blocking downstream signaling pathways or because treatment effects cellular 

viability.  To clarify whether the effects of the inhibitors on NFAT/AP-1 activation are on Tim-1 

signaling and not due to inhibitor-induced cell death, we also examined the effect of inhibitor 

treatment on luciferase activity after PMA and ionomycin stimulation.  PMA, a DAG mimic, and 

ionomycin, a calcium ionophore, work downstream of PLCγ1 and should bypass any Tim-1 

mediated effects on NFAT/AP-1 activation.  Any cells that are alive should be stimulated to 

induce transcriptional activity by PMA and ionomycin treatment, so inhibition of this stimulation 

by U73122 would suggest impaired viability of the cells.  The amount of luciferase activity 

induced by P/I stimulation is similar between empty vector and Tim-1 expressing cells.  
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However, Tim-1-expressing-PLCγ1 knockdown cells had decreased reporter activity as 

compared to empty vector-control siRNA expressing cells in the presence of chemical PLCγ 

inhibiton.  This may indicate that a double block with PLCγ1 knockdown in conjunction with 

PLCγ inhibition decreases cellular viability.  In general, Tim-1-expression despite PLCγ1 

knockdown in D10 T cells, similar to Tim-1 expression in PLCγ1 deficient Jurkat T cells, can 

still enhance NFAT/AP-1 activation.  However, effects of the PLCγ inhibitor treatment remain to 

be clarified, since the Tim-1-induced NFAT/AP-1 reporter activation is not affected by U73122 

treatment in Jurkat T cells but is decreased in D10 T cells. 

3.4.10 Tim-1 upregulation of early markers of activation and cytokine production requires PLCγ  

Next, we wanted to determine the importance of Tim-1 signaling through PLCγ1 for further 

downstream functions, such as early markers of T cell activation.  We activated primary CD4+ T 

cells with varying concentrations of CD3 and CD28 in the presence of the PLCγ inhibitor 

(U73122), anti-Tim-1 (3B3), or both for 18 hours.  Stimulation with the anti-Tim-1 antibody 

slightly enhances both CD25 and CD69 expression at the highest dose of TCR and CD28 co-

stimulation (Fig. 3-9).  This could be in part due to the fact that the highest level of Tim-1 

expression is found at the highest doses of anti-CD3 and anti-CD28 co-stimulation, so the anti-

Tim-1 antibody is able to better crosslink and activate surface Tim-1 (Fig. 3-9 bottom).  In 

contrast, PLCγ inhibition blocks upregulation of these early markers of activation at all 

concentrations of anti-CD3 and anti-CD28.  Treatment with both anti-Tim-1 and the PLCγ 

inhibitor resulted in low levels of CD25 and CD69 (Fig. 3-9).  This suggests that while Tim-1 
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may enhance early markers of T cell activation, this effect is dependent on signaling through 

PLCγ.   

 

 

Figure 3-9: PLCγ inhibition blocks the Tim-1 enhancement of early markers of activation  

(A) CD4+ T cells isolated from C57Bl/6 spleens and lymph nodes were stimulated with varying 

concentrations of CD3 and a fixed concentration of CD28 for 16 hours after isolation.  (B) Tim-

1, CD25, and CD69 levels were determined by flow cytometry and represented by MFI.  (C) 

MFI of Tim-1 expression as measured by flow cytometry. 
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Next, we examined the effect of PLCγ inhibition on Tim-1 induced cytokine production.  

IL-2 cytokine production is enhanced after NFAT/AP-1 activation.  Thus, we examined the 

effect of Tim-1 through PLCγ1 in IL-2 expression.  Primary CD4+ T cells were activated by anti-

CD3/CD28 in the presence of anti-Tim-1 antibodies, with or without PLCγ inhibition.  Here, we 

observe that lower concentrations of TCR activation resulted in little IL-2 production.  

Interestingly, we note that the higher affinity anti-Tim-1 antibody, 3B3, decreases cytokine 

production.  In contrast the lower affinity anti-Tim-1 antibody, RMT1-10, may enhance IL-2 

production at the higher concentrations of anti-CD3/CD28 stimulation (Fig. 3-10 A).  Regardless 

of which anti-Tim-1 antibody was used, inhibition of PLCγ with U73122 abrogated any 

detectable IL-2 production. 

We also studied the effect of PLCγ1 knockdown on Tim-1 co-stimulation of cytokine 

production.  D10 cells were transfected with empty vector or Tim-1 in the presence of control or 

PLCγ1-specific siRNA.  Unlike the control, PLCγ1 siRNA partially decreased expression of 

PLCγ1.  In the presence of co-stimulation from CD3, CD4, and CD28, Tim-1 enhances IL-4 

production, and even partial knockdown of PLCγ1 attenuates IL-4 levels.  This decrease in IL-4 

expression in PLCγ1 knockdown cells cannot be rescued by ectopic Tim-1 expression (Fig. 3-10 

B right).  Tim-1 does not appear to greatly influence TNF-α expression, and PLCγ1 knockdown 

reduced overall levels of TNF-α.  Potentially intriguing is the fact that PLCγ1 reduction 

completely abrogated TNF-α production while similar PLCγ1 knockdown in Tim-1 expressing 

cells only partially reduced TNF-α expression (Fig. 3-10 B-right).  Overall, these results suggest 

that Tim-1’s effects on cytokine production are at least in part, if not mostly, dependent on 

signals generated downstream of PLCγ1. 
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Figure 3-10: Tim-1 cytokine induction is inhibited in the absence of PLCγ 

(A) CD4+ T cells isolated from C57Bl/6 spleens and lymph nodes were activated with anti-Tim-1 

antibodies (3B3 or RMT1-10) in the presence or absence of varying concentrations of CD3 and 

CD28 with or without U73122.  (B) D10 cells transfected with Tim-1 and control or PLCγ1 

siRNA were rested overnight.  The next day 0.5x106 cells per condition were stimulated with 
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CD3, CD4, and/or CD28.  24 and 48 hours after TCR stimulation, supernatants were collected 

and IL-4 and TNF-α concentrations were determined by ELISA. 

3.4.11 PLCγ1 deficient Jurkat have reduced tyrosine phosphorylation induced by Tim-1 

We next wished to determine the mechanism underlying PLCγ1 independent, but CD3, CD28, 

and Tim-1 dependent, NFAT/AP-1 activation in Jurkat T cells.  First, since the PLCγ1-

independent effect required co-stimulation by anti-TCR and anti-CD28 together, we investigated 

the patterns of pY in Tim-1-expressing T cells stimulated with anti-TCR alone as compared to 

both anti-TCR and anti-CD28.  Overall, the pY pattern in Jγ cells did not differ much regardless 

of type of stimulation, though more numerous bands were apparent at 20 minutes.  Interestingly, 

there was a slight induction of a band below 75kD in the TCR/CD28 co-stimulated cells that is 

less prominent in the anti-TCR alone lanes (Fig. 3-11 A left).  In addition, the Jγ stimulated cells 

displayed weaker pY induction as compared to the Jγ WT, Jurkat, and J.vav cells (Fig. 3-11 A).   

We next studied differences in pY of specific proteins in Jγ cells transfected with empty 

vector or Tim-1, after anti-TCR, anti-CD28, and anti-Tim-1 stimulation.  In general, pY 

induction is reduced in Jγ cells as compared to Jγ WT cells (data not shown).  Very surprisingly, 

a small amount of pPLCγ1 was induced, and this band was even more prominent in anti-

TCR/CD28/Tim-1 stimulated cells (Fig. 3-11 B).  According to the manufacturer, their pPLCγ1 

antibody does not cross react with other PLCγ members, such as pPLCγ2.  However, these Jγ 

cells are completely deficient in PLCγ1, which might suggest that there is some cross reactivity 

with PLCγ2, or even cross-reacting with other proteins of the same size.  There are small 

differences in tyrosine phosphorylation between anti-TCR/CD28 stimulated control or Tim-1-
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expressing cells.  One such difference is the induction of pERK1/2 found in Tim-1 expressing 

cells co-stimulated with anti-TCR/CD28 (Fig. 3-11 B).  The greatest induction of pPLCγ1, 

pZAP-70, and pp38 is found in Tim-1 expressing cells stimulated with anti-TCR/CD28/Tim-1 

(Fig. 3-11 B).  This suggests that cross-linking Tim-1 in the presence of TCR/CD28 co-

stimulation might rescue some important pY proteins and thus contribute to the enhanced 

NFAT/AP-1 activation seen in Jγ cells. 

 

Figure 3-11: PLCγ1 deficient Jurkats have decreased phosphorylation 

(A) Jγ1 or Jγ1 WT cells transfected with Tim-1 were stimulated with anti-TCR with or without 

anti-CD28 for varying times.  Lysates were run on SDS-PAGE gels and immunoblotted with 

anti-pY.  (B) Jγ1 cells were transfected with empty vector or Tim-1.  Cells were stimulated with 

anti-TCR or anti-CD28 in the presence or absence of anti-Tim-1.  Lysates were separated on 

SDS-PAGE gel and blotted for a variety of phosphorylated proteins. 
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3.4.12 Tim-1 requires Ca2+ for NFAT/AP-1 reporter activity 

Due to the dramatic effect of Tim-1 on NFAT/AP-1 and pure NFAT activation and the 

dependence of NFAT induction on calcium, we examined the relationship between Tim-1 and 

calcium.  First, we asked whether the Tim-1, TCR, and CD28 induction of NFAT/AP-1 

transcriptional activity is dependent on the presence of extracellular calcium.  We incubated 

Tim-1 expressing Jurkat cells in the presence of 2mM EGTA to chelate extracellular calcium.  

While Tim-1-transfected PLCγ1-deficient Jurkat T cells are able to induce NFAT/AP-1 

activation, treatment with EGTA abrogates this effect (Fig. 3-12 A).  This suggests that Tim-1 

activation of NFAT/AP-1 in the absence of PLCγ1 is still dependent on increased intracellular 

calcium.   

Given the above findings, we hypothesized that Tim-1 could potentially enhance calcium 

flux in a PLCγ1-independent manner.  Using the ratiometric dye indo-1, we compared the 

calcium flux between Jγ cells transfected with empty vector or Tim-1.  After analyzing the ratio 

of bound to free calcium, we were unable to detect a significant difference between empty vector 

and Tim-1 expressing Jγ cells.  Surprisingly, stimulated Jγ cells that did not express Tim-1 had 

slightly enhanced calcium flux in the presence of TCR and CD28 stimulation (Fig. 3-12 B).  

Since these studies were conducted in transiently transfected Jγ cells, it was possible that the 

inability to detect differences in Ca2+ flux depends on the varying levels of Tim-1 expression 

from cell to cell.  Thus, we gated the Tim-1 transfected Jγ cells for Tim-1 expression (Flag 

staining), and separated these into two populations-those with high levels of Tim-1 and those 

with low levels.  The level of Flag (i.e. Tim-1) expression had no effect on modulation of 

calcium flux (Fig. 3-12 C).  Thus, while calcium is required for the Tim-1-dependent but PLCγ1-
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independent, stimulation of NFAT/AP-1 activation, ectopic expression of Tim-1 itself is not 

sufficient for enhancing calcium flux.  Another molecule must therefore be required for the Tim-

1 and TCR/CD28 co-stimulation dependent effects on transcriptional activation. 

 
Figure 3-12: Tim-1 induction of NFAT/AP-1 activation requires Ca2+ but does not influence 

Ca2+ flux 

(A) Jγ1 or Jγ1 WT cells were transfected with an NFAT/AP-1 luciferase reporter and empty 

vector, Tim-1, Tim-1Y26F, or Tim-1∆Cyto construct in the presence or absence of 2mM EGTA.  (B) 

Jγ1 cells were transfected with empty vector or Tim-1.  The next day cells were loaded with 

Indo-1 and stimulated with anti-CD3, CD28, or ionomycin.  The Ca2+ flux was determined by 

flow cytometry.  Indo-1 ratio of bound to free Ca2+ was analyzed using FloJo software.  (C) Tim-

1 transfected Jγ1 cells were stained for Flag-Tim-1 (M2) expression after being loaded with 
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indo-1.  Ca2+ flux was determined as above.  Cells were gated based on Flag expression and 

analyzed using FloJo. 

3.4.13 Akt inhibition of Tim-1 expressing cells enhances NFAT/AP-1 activation 

Tim-1 enhancement of transcriptional activity independent of PLCγ1 has been most consistent in 

the PLCγ1 deficient Jurkat line, Jγ.  One of the best understood defects in Jurkat T cells is the 

increased phosphorylation of Akt due to lack of the phosphatases PTEN and SHIP (153).  In 

addition, work from this lab and others has demonstrated that Tim-1 overexpression and ligation 

by one of its ligands, Tim-4, is able to induce phosphorylation of Akt (13).  In particular, our lab 

has shown that the p85 subunit of PI3K binds the Tim-1 cytoplasmic tail in an Lck-dependent 

manner.  This binding leads to the phosphorylation of Akt and induction of IL-2 expression (64).  

T cells from p85 α/β double knockout mice are unable to induce IL-2 in a Tim-1 dependent 

manner (64).   We hypothesized that Tim-1 binding and activation of Akt might help compensate 

for loss of PLCγ1 to enhance NFAT/AP-1 activation in Jγ cells.  To test this hypothesis, we 

treated Tim-1 transfected Jγ and JγWT cells with the Akt inhibitors Ly294002 and Akti. 

Surprisingly, treatment with either Ly294002 or Akti in the presence of TCR and CD28 co-

stimulation enhance Tim-1 mediated NFAT/AP-1 activation (Fig. 3-13 A-C).  This effect is not 

dependent on the dose used since concentrations from 0.5-5µM of Akti do not decrease the 

reporter activity.  This is especially unanticipated because work from our lab has previously 

demonstrated that p85 and Akt activity are necessary for Tim-1 induced NFAT/AP-1 activation 

in the parental Jurkat line. 
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Figure 3-13: Inhibition of the PI3K pathway enhances Tim-1 induced NFAT/AP-1 

activation 

Jγ1 and Jγ WT cells were transfected with NFAT/AP-1 reporter with or without Tim-1 in the 

presence of a Ly (A) or varying concentrations of Akti (B).  Luciferase activity was assayed as 

described previously. 

 

Since some Akt inhibitors have been shown to paradoxically increase activation, we 

utilized another approach to better delineate a role for Akt in these Jγ and JγWT cells.  The p85β 

subunit of PI3K is the dominant subunit in primary mouse T cells.  Thus, we attempted to 

knockdown p85β and assess its effects on NFAT/AP-1 activation.  In Jγ cells, transfection of 

p85β siRNA in conjunction with Tim-1 and anti-TCR/CD28 did not alter NFAT/AP-1 activation 

(Fig. 3-14 top).  In contrast, in JγWT cells, p85β knockdown decreased NFAT/AP-1 activity 
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(Fig. 3-14 middle).  It was challenging to determine the amount of p85β knockdown, since it was 

difficult to separate out the p85 α and β bands well enough to distinguish between the two 

isoforms.  However, there does appear to be some knockdown, especially in the JγWT when 

10µg of shRNA were transfected (Fig. 3-14 bottom).  It is possible that the failure to reduce 

NFAT/AP-1 activity in the Tim-1 expressing Jγ cells could be due in part to incomplete p85 

knockdown.  Another possibility is that partial or complete knockdown of both p85 isoforms is 

required for inhibition of Tim-1 and co-stimulation induced reporter activity. 
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Figure 3-14: p85β is not required for Tim-1 induced NFAT/AP-1 activation 

Jγ1 (top) and Jγ WT (middle) cells were transfected with empty vector or Tim-1 in the presence 

or absence of p85β siRNA.  Luciferase activity was determined as done previously.  Expression 

levels of PLCγ1 and p85 were assessed by immunoblotting (bottom). 
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3.4.14 Vav1 is not sufficient for Tim-1 mediated signaling 

Vav1 is another intriguing candidate for mediating PLCγ1-independent but Tim-1 and co-

stimulation dependent transcriptional activity.  Vav1 has well established roles in enhancing 

NFAT/AP-1 activation, and multiple pathways have been implicated (154).  Vav1 is necessary 

for the phosphorylation of PLCγ1 and PLCγ2 as well as Ca2+ mobilization in mast cells (155).  

Signaling between Vav1, possibly through interactions mediated by SLP-76 and Nck, and Pak 

may also lead to NFAT/AP-1 activation (156, 157).  Vav1 has even been shown to facilitate 

NFAT movement to the nucleus to become transcriptionally active (158).  Considering these 

important signaling pathways requiring Vav1, we hypothesized that the effect of Tim-1 on 

transcriptional activity might be mediated through Vav1.  To investigate the requirement for 

Vav1 in Tim-1 induced NFAT/AP-1 activation, we transfected Tim-1 or Tim-1∆Cyto into Vav1-

deficient Jurkat cells (J.Vav) and assayed for NFAT/AP-1 luciferase activity.  Similar to PLCγ1 

deficiency, Tim-1-expressing J.Vav cells are still able to induce NFAT/AP-1 activation in the 

presence of TCR and CD28 co-stimulation.  Of interest, this enhancement of reporter activity 

appears to be less dependent on co-stimulation, since activation by anti-TCR alone also increases 

the induction of NFAT/AP-1 (Fig. 3-15 A).  This does appear to be a Tim-1 mediated effect 

since the cytoplasmic tail truncation of Tim-1 is unable to enhance transcriptional activation.   
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Figure 3-15: Vav1 is not necessary for Tim-1 induced NFAT/AP-1 activation 

(A) Jvav cells were transfected with an NFAT/AP-1 reporter in the presence of empty vector, 

Tim-1, or Tim-1∆Cyto.  Luciferase activity was determined as done previously. (B) Jvav, Jγ1, and 

Jγ WT were transfected with and NFAT/AP-1 reporter in the presence or absence of Tim-1 with 

or without Vav1 shRNA.  Expression of PLCγ1, vav1, and β-actin were determined by 

immunoblotting.  (C) Jvav, Jγ1, and Jγ WT were transfected with and NFAT/AP-1 reporter in the 
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presence or absence of Tim-1 with varying concentrations of Vav1 shRNA.  Protein levels were 

determined by immunoblotting.  Each luciferase assay is a representative image from at least 

three separate experiments.   

 

Since lack of Vav1 alone is insufficient to abrogate the Tim-1 and co-stimulation induced 

NFAT/AP-1 activity, we next examined the possibility that this transcriptional upregulation 

requires both PLCγ1 and Vav1.  Towards this goal, we knocked down Vav1 in the PLCγ1 

deficient line, Jγ, and determined the necessity of both molecules for Tim-1 induced NFAT/AP-1 

activity.  Knockdown of Vav1 in the absence of PLCγ1 but presence of Tim-1 and co-stimulation 

demonstrated similar levels of NFAT/AP-1 induction as the lack of PLCγ1 alone (Fig. 3-15 B).  

It is interesting to note that the J.Vav cells express higher levels of PLCγ1, which might 

contribute to enhance NFAT/AP-1 activation.   Thus, partial loss of Vav1 and absence of PLCγ1 

are not sufficient to attenuate Tim-1 mediated NFAT/AP-1 activity.   

We next determined whether greater Vav1 knockdown was necessary for the Tim-1 

mediated increased transcriptional activity.  Co-transfection with higher levels of Vav1 shRNA 

in the control (empty vector) cells induced more efficient Vav1 knockdown.  Interestingly, co-

transfection of Vav1 shRNA with Tim-1 resulted in less Vav1 knockdown in the Jγ cells (Fig. 3-

15 C).  The presence of Tim-1 appears to rescue Vav1 expression or to interfere with Vav1 

shRNA expression.  This increased Vav1 in the presence of Tim-1 was observed in three out of 

four experiments.  Overall, even in the absence of PLCγ1, increased Vav1 knockdown was 

insufficient to abrogate the Tim-1 mediated NFAT/AP-1 transcriptional activity.  PLCγ1-

deficient-Vav1 reduced Jurkat T cells are still able to enhance NFAT/AP-1 activation.   
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3.4.15 Tim-1 does not bind PLCγ2 but induces a tyrosine phosphorylated band around 150kD 

PLCγ2 shares many similarities with PLCγ1.  Although PLCγ1 is the predominant isoform found 

in T cells, PLCγ2 can also be detected in T cells (159).  Reports from the literature have 

demonstrated that sometimes loss of multiple family members are necessary for loss of function 

in different systems.  For instance, the phenotype of Lck knockout mice were not as dramatic as 

anticipated.  This was because Fyn, another Src family kinase, can partially compensate for the 

loss of Lck (160, 161).  Thus, we hypothesized that in the absence of PLCγ1, its closely related 

family member, PLCγ2, might serve a similar function and rescue downstream signaling.  Jγ 

cells do not express PLCγ1 but do express PLCγ2 (Fig. 3-14b).  We were not able to detect a 

direct interaction between PLCγ2 and Tim-1 by Co-IP nor were we able to detect tyrosine 

phosphorylation of a band around the size of Tim-1 (Fig. 3-14c).  However, we were able to 

visualize pY of a band around 150kD that was induced by anti-TCR and anti-TCR/CD28 co-

stimulation (Fig. 3-14c).  This band could potentially be phosphorylation of PLCγ2 since Jγ cells 

do not express PLCγ1 (Fig. 3-14c and a).  In addition, the pattern of pY in the Tim-1 transfected, 

TCR/CD28 stimulated cells is different than cell transfected with empty vector and Tim-1 

cytoplasmic tail truncation mutant.  In particular, there is greater induction of some lower 

molecular weight bands (Fig. 3-14c).  These data suggest that while Tim-1 may not directly 

interact with PLCγ2, it may still induce some signaling downstream of PLCγ2 to impact T cell 

activation.    
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Figure 3-16: PLCγ2 is expessed in Jγ cells 

(A) One million Jγ1 and Jγ WT cells transfected with empty vector, Tim-1, or Tim-1Y276F were 

stimulated with anti-TCR or anti-CD28.  The lysates were separated on SDS-PAGE gel and 

blotted for pPLCγ1 as well as total PLCγ1. (B) One million Jγ1 and Jurkat T cells were lysed and 

blotted for PLCγ2 before stripping and reprobing for PLCγ1. (C) Jγ1 cell lysates were IP’ed with 
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2µg of PLCγ2.  The lysates were separated by SDS-PAGE gel electrophoresis and blotted for 

PLCγ2, Flag-Tim1, and pY. 

3.5 DISCUSSION 

Here we identify multiple Tim-1 binding partners and patterns of differentially phosphorylated 

proteins downstream of Tim-1 signaling.  Specifically, we demonstrated that although Tim-1 can 

bind PLCγ1, Tim-1 does not necessarily mediate its signaling events through PLCγ1.  Ectopic 

expression of Tim-1 in conjunction with TCR and CD28 co-stimulation leads to induction of 

NFAT/AP-1 activity even in the complete absence of PLCγ1 in Jurkat T cells.  Knockdown of 

PLCγ1 in the D10 line was also able to recapitulate this finding.  This PLCγ1-independent effect 

requires the Tim-1 cytoplasmic tail and Ca2+ but does not require Akt and Vav1, although PLCγ2 

may be involved.   

However, these are data that still need to be reconciled.  While D10 cells also have Tim-1 

mediated NFAT/AP-1 induction, treatment with the PLCγ inhibitors, U73122 and neomycin, 

abrogated this reporter activity, suggesting that some PLCγ (possible PLCγ2) is required for 

enhanced reporter activity.  In contrast, treatment with U73122 in Tim-1 expressing Jγ and JγWT 

cells (derived from Jurkat T cells) was not able to attentuate NFAT/AP-1 activation indicating 

that PLCγ family members are not necessary for Tim-1 signaling and that additional or different 

molecules are involved in Jurkat T cells but not D10 T cells.   

Further, the PLCγ-dependent expression of early markers of activation and cytokine 

production does not correlate with the enhanced NFAT/AP-1 transcriptional activity.  When 
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PLCγ1 was knocked down in Tim-1 expressing D10 cells, cytokine production of IL-4 

decreased.  Conversely, while treatment with anti-Tim-1 antibodies can enhance cytokine 

production and expression of early markers of activation, inhibition of PLCγ by U73122 

attenuates the Tim-1 induced IL-2 production as well as CD25 and CD69 surface expression.  

Tim-1 signaling through PLCγ1 appears to be more critical for cytokine expression in D10 and 

primary CD4+T cells than in Jurkat cells. NFAT/AP-1 is not the only transcription factor induced 

to regulate early markers of activation, including CD25 and CD69, or to enhance cytokine 

production, IL-2 or IL-4.  One possibility is that while Tim-1 can compensate for lack of PLCγ1, 

other proteins that still remain to be identified influence other transcription factors and T cell 

activation.  It would be interesting to perform a transcriptional microarray analysis on the 

different T cell lines in the presence or absence of Tim-1 and CD3/CD28 co-stimulation with or 

without PLCγ inhibition to determine a profile of genes differentially regulated under these 

conditions.  Transcriptional microarray could identify novel targets downstream of Tim-1-

dependent and PLCg-independent signaling. 

One intriguing candidate protein that might confer some functional compensation on T 

cell activation in the absence of PLCγ1 is its close family member, PLCγ2.  While a role for 

PLCγ1 in T cell activation is well accepted, a role for PLCγ2 in T cell signaling was unknown, 

and PLCγ2 has often been considered to be more important for BCR signaling.  However, recent 

work has begun to establish a role for PLCγ2 in TCR mediated activation.  A recent report 

demonstrated that PLCγ2 can associate with LAT and SLP-76 and that PLCγ1/PLCγ2 double 

deficient mice have more defects in T cell activation than PLCγ1 deficient mice (159).  These 

papers suggest that PLCγ2 may have a greater role in T cell activation than previously 

appreciated.  Also, it has been reported that even a when 90% of PLCγ1 is knocked down, there 
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is relatively normal T cell function as described by normal transcriptional activation and calcium 

flux (144).  This suggests that perhaps even a small amount of PLCγ2, if it functions similar to 

PLCγ1, may be sufficient to compensate and induce transcriptional activity.  PLCγ1 deficient 

Jurkat T cells express PLCγ2, so in these experiments PLCγ2 may be interacting with Tim-1 and 

compensating for loss of PLCγ1 in Jγ cells.  Although we were not able detect a direct interaction 

between Tim-1 and PLCγ2 by co-IP, this does not mean that there is no interaction.  There could 

be an indirect interaction whereby Tim-1 binds an intermediate protein that in turn activates 

PLCγ2.  In this case we would not be able to detect a direct interaction between Tim-1 and 

PLCγ2.  Alternatively, the interaction between Tim-1 and PLCγ2 may be very weak.  In this 

case, the low affinity interactions between the proteins might be destroyed upon lysis during the 

co-IP process.  There is a band phosphorylated at approximately 150kD, which is suggestive of 

PLCγ2 is phosphorylation in the Tim-1 expressing and co-stimulation induced Jγ cells.  

Detection of pPLCγ2 with a phosphospecific antibody would be a more specific indication of 

PLCγ2 activation.  Further, determining the effect of knockdown of PLCγ2 in Tim-1 expressing 

Jγ cells on NFAT/AP-1 activation would also be critical in determining its importance in this 

signaling pathway.  A caveat with this hypothesis is the effect of chemical inhibition of PLCγ by 

U73122 or neomycin.  In my data, it appears that U73122 and neomycin are not able to abrogate 

Tim-1 and co-stimulation induced NFAT/AP-1 activation in Jγ or JγWT cells though the 

inhibitors can block reporter activity in D10 T cells, as well as cytokine expression and early 

activation marker upregulation in primary CD4+ T cells.  One possibility is that these inhibitors 

might have off target effects and block more than just PLCγ.  The mechanism behind U73122 

inhibition of PLCγ remains poorly understood, and at least one study in smooth muscle cells has 



 135 

shown that U73122 blocks Ca2+ release through its effects on the sarcoplasmic reticulum calcium 

ATPase pump rather than through PLC (162). Hence, U73122 may not be the most specific 

inhibitor and may be interfering with an unknown factor impacting activity in the Jγ T cells.  

Alternatively, the paradoxical effects on transcriptional and cytokine activity might be due to the 

different levels of PLCγ1 and PLCγ2 in these cell types, i.e. D10 cells may express less PLCγ2 

than Jγ cells, which may have functional consequences.  Better characterization of the expression 

and activation of PLCγ2, as well as the downstream pathways in these different cell types, Jγ, 

JγWT, D10, and primary CD4+ cells, will be necessary to clarify the role of PLCγ1 and PLCγ2 in 

Tim-1 function.  While the above effects might be due to the different levels of PLCγ1 and 

PLCγ2 found within these cells types and the ability of PLCγ isoforms to compensate in 

function, more work will be necessary to uncover the specific mechanism(s) underlying the 

effect on transcriptional and cytokine activity. 

Further investigation of the role of Vav1 in Tim-1 mediated signaling may also be 

warranted.  While Vav1 deficiency is not sufficient to attenuate Tim-1 and co-stimulation 

mediated NFAT/AP-1 activation, this may in part be due to the increased levels of PLCγ1 found 

in the J.Vav cells or the ability of different Vav isoforms to compensate for Vav1.  Similarly, 

knockdown of Vav1 in PLCγ1 deficient Jurkat T cell is not able to abrogate the Tim-1 co-

stimulation of NFAT/AP-1 activation.  This could suggest that complete deficiency of Vav1 is 

necessary to observe a decrease in reporter activity.  To really address this issue, it would be 

necessary to either completely knockdown both PLCγ1 and/or PLCγ2 in the Vav1 deficient cells 

or to knockdown more of the Vav isoforms in the PLCγ1 deficient Jurkat T cells.  Alternatively, 

if deficiency of all the Vav isoforms is necessary to abrogate all Tim-1 mediated signaling 

effects, then one might assay for cytokine production in CD4+ T cells from Vav triple knockout 
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mice stimulated with varying concentrations of CD3/CD28 and anti-Tim-1 antibodies and 

compare these to CD4+ T cells from littermate controls treated under the same conditions. 

Another puzzling aspect is the discrepancies on the role of PI3K and IL-2 production 

between this data and previously published work. For instance, previous work by this laboratory 

has demonstrated that inhibition of Akt by Ly294002 in Jurkat T cells is able to abrogate the 

Tim-1 and co-stimulation induced NFAT/AP-1 activation and that in primary T cells deficient in 

both p85α and β Tim-1 was unable to induce IL-2 production (64).  However, in this work, 

chemical inhibition of the PI3K pathway resulted in enhanced NFAT/AP-1 reporter activity.  

This could be due to some intrinsic difference in the Jγ cells after somatic hypermutation as 

compared to their parental Jurkat T cells.  Also, perhaps less surprising, p85β knockdown alone 

was insufficient to abrogate Tim-1 and co-stimulation induced NFAT/AP-1 activation.  It is 

likely that knockdown of both p85 α and β would be required to observe an effect on reporter 

activity.  Another divergence from the literature is that the high affinity anti-Tim-1 antibody, 

3B3, has been shown to induce IL-2 production (33), whereas my data suggest that 3B3 

attenuates IL-2 production while the lower affinity RMT1-10 enhances IL-2 levels.  This could 

be possibly due to differences in the batch of antibody or differences in CD3 and CD28 

stimulation conditions.  The differential effects of the Tim-1 antibodies is at least consistent with 

the literature suggesting that treatment with these antibodies have diverse effects on cytokine 

production and disease progression.   

The extracellular domain of Tim-1 has been suggested to be important for asthma 

susceptibility and ligand binding.  However, whether mutations in the extracellular domain 

contribute to differences in signaling has not been extensively studied.  Tim-1 structural 

predictions suggest that Tim-1 may interact in a homotypic manner, and that this binding 
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depends on motifs found in its IgV domain, specifically H64.  To investigate the functional 

consequences of interfering with this binding, we mutated the histidine to a glutamine.  While 

there is no difference in NFAT/AP-1 activation between the WT Tim-1 and Tim-1H64E 

constructs, there may be a decrease in Elk-1 activation.  Thus, homotypic Tim-1 interactions may 

only transduce a specific subset of signaling pathways that would allow for finer tuning of the 

Tim-1 response.  The mucin domain has also been implicated in affecting T cell function, and the 

C57Bl/6 form of Tim-1 with a longer mucin domain appears to have greater transcriptional 

activity than the BALB/c form.   

Although the majority of this work focused on the physical and functional interactions 

between Tim-1 and PLCγ1, multiple other putative binding proteins were identified that might 

also play roles in Tim-1 induced T cell activation. One protein identified, BAT2, may be of 

interest based on its potential association with Grb2, a well known signaling adaptor molecule 

(163). These putative interactions could be exciting for a few reasons.  One possibility is that 

Tim-1 might interact with BAT2 and Grb2 and lead to activation of MAPKinase pathways.  This 

could be one of the mechanisms by which Tim-1 induces increased elk-1 activation.  Another 

option is a role for Tim-1/BAT2/Grb2 in microcluster formation.  As described in the previous 

chapter, Tim-1 forms microclusters upon activation by anti-TCR/CD28.  A 2011 paper on BCR 

microclusters demonstrated that Grb2 is found in BCR microclusters and important for coupling 

to dynein and proper movement (but not formation) of the micrclusters (164).  Less is known 

about the importance of the Grb2 adaptor protein and movement.  An appealing possibility is that 

Tim-1 may bind BAT2 and Grb2 and subsequently influence dynein mediated TCR microcluster 

movement. 

Another intriguing and logical binding partner is Fyn, a member of the Src family of 
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tyrosine kinases, which are important for inducing early TCR signals.  Further, Fyn has been 

demonstrated to bind, phosphorylate, and interact with Tim-1 in B cells (147).  While my work 

did not consistently demonstrate Tim-1 binding to Fyn, occasionally one could observe some 

interaction that was not always dependent on pervanadate stimulation.  This could indicate that 

there is only weak binding affinity between Tim-1 and Fyn that was not well preserved during 

the co-IP process.  Even if there is only a transient physical interaction, Fyn could still be 

phosphorylating Tim-1.  A kinase assay would be necessary to definitively rule include or out a 

role for Fyn in phosphorylating Tim-1. 

Other interesting binding partners are the multiple translation factors. T cell activation 

also requires co-stimulation to undergo selective metabolic changes to expand and proliferate 

after activation.  CD28, one of the best-known T cell co-stimulatory molecules, regulates 

survival, translation, and metabolism via PI3K (145).  Tim-1 also signals through PI3K and may 

work in a similar manner (64).  Thus far Tim-1 has only been shown to regulate T cell activation 

by influencing cytokine expression. However, CD28 promotes T cell survival by regulating 

protein translation of Bcl-XL via PI3K phosphorylation of 4E-binding protein-1 

phosphorylation, which allows for initiation of the eIF4F translation complex (165). Since Tim-1 

also signals through PI3K and enhances mRNA of anti-apopotic molecule Bcl-2 (41, 64), Tim-1 

may have a role in T cell activation and survival by signaling through PI3K to induce anti-

apoptitc factors, Bcl-XL and Bcl-2. Further, the association between the cytoplamsic tail of Tim-

1 and translation initiation factors, eIF4G and eIF4A, suggest that Tim-1 may also induce 

expression of anti-apoptotic factors by initiation of the eIF4F complex.  

T cells must also initiate metabolic changes in preparation for expansion.  CD28 supports 

aerobic glycolysis in T cells by upregulating GLUT1 via PI3K (166).  Tim-1 may potentially 
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bind the important metabolic factor, ACC1, may work in a similar manner to allow for glucose 

accumulation.  It could be interested to determine whether Tim-1 in the presence of co-

stimulation signals through PI3K and ACC1 to mediate any changes in GLUT1 expression.   

While the effects of anti-Tim-1 antibodies and ligands in T cell differentiation have been 

studied in animal models of disease, the underlying intracellular signaling pathways mediating 

these effects are unclear (13, 34, 35, 41, 58).  Our data contributes to these findings by 

demonstrating differential tyrosine phosphorylation of various proteins downstream of anti-Tim-

1 cross-linking in the presence or absence of CD3/CD28 co-stimulation.  Specifically, we 

identified a protein, Lrch3, around 75kD that is induced by treatment with some but not all anti-

Tim-1 antibodies.  While little is known about Lrch3 except for a possible role in E. coli 

susceptibility in pigs (167), more is known about dLRCH, the drosophila homolog.  There is a 

great deal of sequence homology between the murine and drosophila Lrch proteins(141).  It has 

been suggested that Lrch binds to ERM proteins by yeast two hybrid but this binding has not 

been confirmed (141, 168).  Lrch proteins have been suggested to be cytoskeletal scaffolding 

proteins.  In particular, dLRCH appears to be important for cellular division, particularly proper 

localization of the mitotic spindle.  Further dLRCH has been implicated fertility and fitness under 

conditions of stress (141).  Cross-linking Tim-1 by anti-Tim-1 antibodies has also been 

implicated in enhanced cellular proliferation and survival (41).  Since Tim-1 co-localizes with 

ERM proteins and Lrch putatively binds ERM, Tim-1-Lrch-ERM may form a complex that 

influences cellular division and to promote T cell activation and differentiation. 

Tim-1-expressing cells incubated with PS have increased Akt and ERK1/2 

phosphorylation upon CD3/CD28 co-stimulation.  However, the Tim-1:PS effects on T cell 

activation appear to be less striking than the effects on iNKT activation (58).  This could be due 
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to differences cell type, systems utilized, or activity measured.  The iNKT study used primarily 

primary cells, stimulation with α-GalCer, PS stimulation by PS-coated liposomes, and measured 

cytokine activity (58).  These data used T cell lines, anti-CD3/CD28 stimulation, apoptotic PS-

expressing thymocytes, and measured NFAT/AP-1 activity and phosphorylation.  Since 

thymocytes have a tendency to rapidly undergo apoptosis, it is possible that the “viable” 

thymocytes had started expressing PS, especially at the later time points, and this could 

contribute to the smaller differences between phosphorylation dectected in Tim-1 cells incubated 

with apoptotic or “viable” thymocytes.  Thus, another, reductionist approach to study the Tim-1 

interaction would be to incubate PS-coated liposomes or related control phospholipid that Tim-1 

does not bind, i.e. phosphatidylcholine (49), to Tim-1-expressing T cells and to measure 

intracellular phosphorylation or cytokine production.  This might yield insights to clarify the role 

of PS interactions with Tim-1 in T cells. 

Taken together these data refine our understanding of the pathways and mechanisms 

underlying Tim-1 mediated signaling.  We have provided mechanistic insight into how 

differential Tim-1 ligation may lead to diverse outcomes, possibly through the selective tyrosine 

phosphorylation of select proteins.  We have demonstrated that Tim-1-expression can bypass the 

requirement for PLCγ1 for the induction of transcriptional activity.  Investigating the role of 

these Tim-1 interacting proteins could lead to greater insight into how Tim-1 functions in vivo.   
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4.0  SUMMARY/FUTURE DIRECTIONS 

Tim-1 is a member of a family of transmembrane receptors with roles in immune regulation.  

Original work from this lab demonstrated that Tim-1 functions as a co-stimulatory molecule to 

enhance T cell activation downstream of TCR/CD28 co-stimulation in a Y276 dependent 

manner(33, 169).  Although initial work suggested that activation of Tim-1 resulted in increased 

Th2 phenotype, a plethora of work has arisen suggesting that Tim-1 may more broadly regulate 

T cell activation in a both positive and negative manner (34, 170, 171).  At the initiation of this 

thesis work, the mechanism by which Tim-1 mediates these activities was unclear.  In addition, 

where Tim-1 localizes in response to activation by APCs was not understood.  Thus, this work 

has focused on identifying Tim-1 binding partners and characterizing its localization upon 

activation by APCs. 

In this thesis, I have added to our knowledge of Tim-1 signaling and localization.  In 

Chapter 2, multiple putative Tim-1 binding partners were identified.  In particular, Tim-1 was 

shown to bind PLCγ1, but could activate NFAT/AP-1 transcription in a PLCγ1-independent, but 

still TCR/CD28-dependent, manner.  Chapter 2 demonstrated that Tim-1 forms unconventional 

microclusters and, in contrast to most co-stimulatory molecules, ultimately localizes opposite the 

immunological synapse upon activation by APCs.  Furthermore, this DPC localization is 

mediated in part by ERM binding proteins and influences transcriptional activity and cytokine 
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production.  These data suggest that Tim-1 does not function or localize like other co-stimulatory 

molecules and reveals alternative ways to consider Tim-1 function.   

Tim-1 signaling

NFAT AP-1

Ras

TCR Tim-1

lck PLCγ1

Calcium

Y276

TCR Tim-1

lck ?

NFAT AP-1

RasCalcium

Y276 PLCγ1

PLCγ2?

CD28

 

Figure 4-1: Model of Tim-1 Signaling 

In the presence of TCR alone, Tim-1 induction of NFAT/AP-1 activation is dependent on PLCγ1 

(left).  However, in the absence of PLCγ1, Tim-1 is still able to induce NFAT/AP-1 activation in 

a TCR and CD28-dependent manner (right).   

4.1 TIM-1 MAY HAVE BROADER CO-STIMULATORY FUNCTIONS 

The majority of Chapter 3 focuses on a physical interaction between Tim-1 and PLCγ1, and the 

ability of Tim-1-expressing cells to enhance NFAT/AP-1 activation in a PLCγ1-independent, but 

TCR/CD28 co-stimulation-dependent, manner.  Although binding to PLCγ1 is decreased in the 
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absence of Y276 in the Tim-1 cytoplasmic tail, we were surprised to find that Tim-1 does not 

require PLCγ1 to induce NFAT/AP-1 activation.  The PLCγ1-independent but Tim-1 and 

TCR/CD28 co-stimulation-dependent effect on NFAT/AP-1 activation requires extracellular 

Ca2+, but does not require Akt phosphorylation or Vav1.  Thus, at this point we hypothesize that 

at least in this system PLCγ2 may be compensating for PLCγ1. 

Tim-1’s ability to co-stimulate T cell activation has mainly been studied in the context of 

enhancing transcriptional activation and modulating cytokine production.  However, aside from 

inducing signaling pathways that lead to inducible transcription, T cell activation also requires 

rapid enhancement of translational and metabolic processes (145).  A quiescent T cell is small 

and utilizes relatively little energy, whereas an effector T cell must quickly increase in size and 

undergo glycolysis to meet the energy demands required for activation (172).  Co-stimulation by 

CD28 enhances T cell activation, not only by generating signals that complement those 

emanating from CD3, but also by preparing the cell to meet the metabolic needs of becoming an 

effector T cell (145).  Specifically, via PI3K, CD28 promotes cell survival by initiating the eIF4F 

translation complex to increase translation of Bcl-XL (165), and CD28 assists in aerobic 

glycolysis by upregulating the glucose transporter GLUT1(166).  Although I did not observe a 

consistent interaction between Tim-1 and EIF4G by co-IP, pull-down with a peptide based on the 

Tim-1 cytoplasmic tail revealed other putative binding partners that regulate metabolism and 

translation, including ACC1 and EIF4F.  Thus, verification of other interacting proteins may also 

expand our understanding of Tim-1 function.  The putative Tim-1 binding partners that I have 

uncovered suggest that Tim-1 may have a more global role in T cell activation than previously 

appreciated. 
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Figure 4-2: Tim-1 signaling. 

Tim-1 activation by some (3B3 and 5F12) but not all antibodies can lead to the tyrosine 

phosphorylation of select proteins.  One putative protein induced downstream of Tim-1 ligation 

is Lrch3.  Further, a 13 amino acid peptide of the Tim-1 cytoplasmic tail is thought to bind 

translation and metabolic factors.  This suggests that Tim-1 may have more roles in T cell 

activation than previously appreciated. 
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4.2 TIM-1 LOCALIZATION AWAY FROM THE IS 

We demonstrate that Tim-1 movement towards the DPC requires one or more ERM proteins and 

that mutating putative ERM binding residues (KRK-QGQ) in the juxtamembrane Tim-1 

cytoplasmic tail results in altered localization and decreased cytokine production but, 

paradoxically, enhanced tyrosine phosphorylation downstream of TCR/CD28 co-stimulation.  

Likewise, interference with its proper localization with an ERM-DN construct impaired the 

ability of Tim-1 to enhance transcriptional activation or cytokine production.  The seemingly 

paradoxical increase in early tyrosine phosphorylation, but reduced cytokine production, induced 

by the Tim-1KRK-QGQ mutant could be due to a number of factors.  First, not all tyrosine 

phosphorylation leads to T cell activation, as evidenced by the increase phosphorylation at 

inhibitory Y505 of Lck.  Thus, the increased tyrosine phosphorylation could be due to 

phosphorylation at inhibitory sites, leading to impaired transcriptional activation and cytokine 

production.  Second, there is evidence that cell surface vs. intracellular/vesicular BCR induces 

phosphorylation of distinct substrates (131).  WT Tim-1 is found mostly on the cell surface, 

while Tim-1KRK-QGQ has extracellular as well as intracellular pools, which may generate two 

different and distinct pools of tyrosine phosphorylated proteins.  A third possibility is that Tim-

1KRK-QGQ shifts the localization of other tyrosine phosphorylated proteins, such as Lck or Fyn, 

and increases tyrosine phosphorylation either by prolonging their localization in peripheral 

signaling microclusters or by altering their interacting proteins.  The enhanced tyrosine 

phosphorylation detected in presence of the Tim-1KRK-QGQ mutant happens early (within 2 min), 

which precedes the formation of a mature immune synapse.  Thus, examining the localization of 

microclusters on a lipid bilayer system, where one can see the movement and formation of the 

SMAC, could be instrumental to understanding how early signaling differs from later signaling.  
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Determining the pattern of tyrosine phosphorylation at later time points, on the order of hours, 

may also be enlightening.  For instance, while there is apparently a transient increase of tyrosine 

phosphorylation at between 2-15 minutes, this increased phosphorylation may not persist.  

Identifying specific molecules that are differentially tyrosine phosphorylated downstream of 

Tim-1 or Tim-1KRK-QGQ and TCR/CD28 co-stimulation will contribute to our understanding of 

the importance of Tim-1 localization on T cell function.  

 

Figure 4-3:  Tim-1 localizes away from the IS in an ERM dependent manner. 

Tim-1 forms microclusters.  Many signaling microclusters move towards the immunological 

synapse and cSMAC, such as ZAP-70 and CD3.  However, Tim-1 moves towards the distal pole 

complex (DPC), and this movement appears to require binding to the ERM family of proteins.  
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Another question for future exploration is whether WT Tim-1 ever localizes at the 

immunological synapse.  Some proteins that ultimately reside in the DPC at least transiently visit 

the IS.  One could speculate that Tim-1 might briefly move to the IS in order to interact with 

ligands, such as Tim-4.  However, where Tim-4 localizes and how its interaction with Tim-1 is 

spatially regulated are issues that have not been addressed.  A second possibility is that Tim-1 

requires its IgV domain for proper localization.  Other receptors, such as Ly49A, have been 

shown to be masked be proteins interacting in cis with its extracellular domains, and disruption 

of this interaction allows the NK cell to localize towards the IS (173).  Thus, Tim-1 could be 

binding another protein in cis that prevents its localization towards the IS. More 

structure/function work will be necessary to clarify the importance of the different Tim-1 

domains on Tim-1 localization and function. 

One of the most interesting questions arising from this thesis work is why Tim-1 localizes 

away from the IS.  One way to address the importance of Tim-1 localization towards the DPC 

would be to force Tim-1 to localize at the immunological synapse, for instance, by creating a 

chimeric fusion protein with the extracellular domain of CD28, which should drive localization 

in the immune synapse, and the Tim-1 cytoplasmic tail, which should transmit Tim-1 

downstream signaling.  How forced Tim-1 localization at the IS affects T cell activation or 

effecter function could yield valuable knowledge about the importance of its regulated 

localization and compartmentalization in T cell activation.  One caveat to this approach is that 

Tim-1 signaling may be influenced by interaction of its IgV domain with its natural ligands.  

Tim-1 localization towards the DPC may also be important for other still-unexplored 

possible roles for Tim-1, including T cell migration or T cell polarization during asymmetric 

division.  The DPC and uropod share many features, and a recent paper has implicated CD43, 
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which is concentrated at the DPC and at the uropod, in T cell migration in response to 

chemokines.  Specifically, CD43 undergoes enhanced cytoplasmic tail serine phosphorylation in 

response to chemokine signals, and this migration can be blocked by interfering with ERM 

protein binding (174).  Hence, determining the velocity and distance of Tim-1 or Tim-1KRK-QGQ 

movement in response to Tim-1 antibodies or to chemokines may offer interesting insights into 

Tim-1 function.  Chemokine dependent T cell migration is important in mediating transplant 

tolerance or rejection.  Thus, a role for Tim-1 in migration could potentially be reveal why 

certain Tim-1 antibodies result in allograft acceptance or rejection.  Another fascinating role for 

Tim-1 could be in asymmetric cell division.  Work from Steve Reiner’s lab has suggested that T 

cells undergo asymmetric division after activation and that the “proximal” daughter cell has 

different functions than the “distal” daughter cell (79).  Tim-1 could be localization away from 

stimulation by the APCs in order to be separated with the more distal “memory” cell precursor 

during asymmetric division.  Understanding whether Tim-1 participates in asymmetric division 

and identifying the functional consequences could contribute to our knowledge of T cell 

polarization.   

Another intriguing question is whether Tim-1 localization away from the IS is universal 

to all T cells.  Tim-1 is found on all activated CD4+ cells, but antibody cross-linking of Tim-1 

induces very different responses in in vivo mouse models of disease, and these differences are 

often attributed to the effect of Tim-1 on regulatory T cells (42).  In this regard, we know that 

PKC-θ protein localization impacts T cell function.  Specifically, PKC-θ localizes at the cSMAC 

in effector T cells but away from the cSMAC in regulatory T cells (96, 112).  Work presented in 

this thesis shows that Tim-1 moves away from the IS in a Th2 cell line; however, where Tim-1 

localizes in regulatory T cells, and how this might impact T cell function, has not been 
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examined.  Tim-1 could, similar to PKC-θ, concentrate at different areas of the cell in response 

to activation by APCs, and this localization could have implications for signaling and function, 

including influencing cytokine production or suppressive activity (96).  This could be 

particularly interesting, since TIM-1 is highly expressed on regulatory T cells, and its interaction 

with hepatitis A virus (HAV) inhibits, rather than enhances, TIM-1 mediated co-stimulatory 

functions (121).  It is possible that HAV ligation alters Tim-1 localization in regulatory T cells to 

inhibit its functions.  For instance, perhaps interaction with HAV promotes aggregation of Tim-1 

on the surface of the T cell, away from specific signaling proteins, to mediate its suppressive 

functions. 

 

4.3 TIM-1 RECEPTOR INTERACTIONS 

One of the biggest questions currently in the field is how ligation of Tim-1 results in disparate 

signals, which result in induction of different cytokines and T cell activation or inhibition.  For 

instance, ligation of Tim-1 with a high affinity antibody, 3B3, leads to IFN-γ and IL-17 

production and exacerbation of EAE, while the low affinity antibody RMT1-10 promotes 

enhanced IL-4 and IL-10 production and inhibits EAE development (34).  Although difference in 

the epitopes recognized and binding affinity of the Tim-1 antibodies have both been implicated 

(34, 36), neither can fully explain their incongruent functions on cytokine production and disease 

modulation.  One possibility is that cross-linking with different antibodies generates different 

signaling pathways downstream of Tim-1 ligation.  In Chapter 3, we demonstrate that treatment 

with different Tim-1 induces diverse patterns of tyrosine phosphorylation.  Another relatively 
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unexplored possibility is the orientation of receptor binding, which may influence the 

downstream signaling.  For instance, at least two families of immune receptors, the NK receptors 

and HVEM, can enhance or inhibit signaling based on whether binding is in cis or in trans.  In 

these receptors, binding in cis appears to generate inhibitory signals since cis binding competes 

with trans binding, while binding in trans leads to cellular activation (175).  In accordance with 

this would be the enhanced T cell activation produced by Tim-1 ligands, Tim-4 and PS, which 

should be binding in trans (13, 58).  Therefore, cross-linking by the Tim-1 antibodies may lead 

to differences in signaling, depending on their ability to enhance or inhibit signaling generated in 

cis or interfere with binding in trans.  Alternatively, gonadotropin receptors can generate specific 

but different activating signals in cis and in trans (176).  Understanding whether Tim-1 engages 

in cis binding, and identifying how these binding partners are regulated may provide insights into 

how Tim-1 signaling is regulates.  In addition, trans binding often requires flexibility and folding 

of the stalk domain (177, 178), so investigating the effects of deletion or elongation of the stalk 

domain may also offer insights into Tim-1 receptor function. 

Binding affinity may still play a role in the cis/trans binding.  Similar to CD22 (179), 

Tim-1 on a resting T cell may be constitutively interacting in cis, but high affinity antibodies, 

such as 3B3, may bypass this cis interaction to transduce specific downstream signals and induce 

actin remodeling (perhaps through Vav1).  Lower affinity Tim-1 antibodies, including RMT1-10, 

may only partially overcome cis interactions, and, therefore, may generate weaker, or different, 

downstream signals that result in alternative transcriptional activation and cytokine production.  

Strength of TCR signaling has been implicated in skewing T helper subset differentiation, with 

higher TCR signal strength enhancing T bet expression and a Th1 phenotype, while weaker TCR 

signal strength result in more of a Th2 phenotype (180).  Tim-1 may cooperate with TCR signal 
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strength to influence this process.  For instance, in a murine cardiac transplantation model, 

treatment with 3B3 resulted in production of the Th1 type cytokine IFN-γ and rejection of 

allograft, while in an islet allograft model, treatment with the weaker RMT1-10 led to a more 

Th2 type phenotype and allograft acceptance.  This is not a complete explanation, since 3B3 has 

also been shown to induce Th1, Th2, and Th17 type cytokines (2, 34, 36, 63, 171, 177), but 

factors in the extracellular milieu may also be contributing the cytokine production. Visualizing 

the pattern of Tim-1 localization upon Tim-1 ligation by these antibodies with different epitopes 

and affinities may clarify the role of the receptor in T cell function. 

While Tim-1’s effects on immune modulation has been attributed directly to T cells, a 

growing body of knowledge suggests indirect effects may be key, i.e. effects of Tim-1 on T cell 

activation may be the result of Tim-1’s effects on other cells. As Tim-1 knockout studies and 

other recent work have demonstrated, Tim-1’s influence on immune modulation may depend 

more on its effects on B cells or recruitment of innate immune cells than on T cells (105, 106).   

Therefore, understanding Tim-1 localization and signaling in other cells may clarify some of the 

controversy in the field.  Non-CD4+ expressing cells have distinct tyrosine phosphorylated bands 

induced downstream of Tim-1 antibody ligation (data not shown).  Another consideration is how 

ligation of Tim-1 may bi-directionally influence signaling.  Tim-1 expression has been found on 

multiple cells of the immune system, and Tim-1 has the potential to engage in homotypic trans 

interactions (45).  Therefore, Tim-1 ligation may generate signaling in both the T cell and its 

APC.  Signaling bi-directionally has been shown to generate different signaling pathways in 

different cells (181).  Thus, Tim-1 ligation on T cells may predominant lead to a Th2 type 

cytokine production while Tim-1 engagement on DCs may result in differential activation and 

the production of distinct cytokines as has been demonstrated (40).   
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It may be necessary to reevaluate our thinking about Tim-1 receptor ligation in order to 

better understand how Tim-1 may either activate or inhibit T cell activation.  Many publications 

have determined that Tim-1 is able to modulate immune function.  However, Tim-1 may have 

greater complexity and more functions than previously appreciated, including cis and trans 

binding.  Clearer understanding of how Tim-1 mediates its functions will provide more specific 

targets for drug design and more specificity in modulation of the downstream signaling. 

 
Figure Legends for Movies: 
Movie 2-1: Tim-1 microclusters do not localize with peripheral ZAP-70 microclusters.  Jurkat cells 

transiently transfected with Tim-1-GFP (green) and ZAP70-TagRFP (red) were allowed to settle on anti-

TCR/CD28 coated coverslips.  TIRF images were continuously taken on a Nikon A-1 microscope by 

Simon Watkins. 

 

Movie 2-2: anti-CD3/CD28/Tim-1 stimulation mobilizes ZAP-70 microclusters.  Jurkat cells transiently 

transfected with Tim-1-GFP (green) and ZAP70-TagRFP (red) were allowed to settle on anti-

TCR/CD28/Tim1 (3B3) coated coverslips.  TIRF images were continuously taken on a Nikon A-1 

microscope by Simon Watkins. 

 

Movie 2-3: WT Tim-1 moves away from the nascent IS after APC stimulation. Jurkat T cells transiently 

transfected with Tim-1-GFP (green) and ZAP70-TagRFP (red) were incubated with Raji cells incubated 

with 1 mg/mL SEE and stained with Cell Tracker Blue (blue). Mid-plane images were taken every 6.7 

seconds over the course of 19 minutes in a heated chamber on an Olympus FluoView 1000 confocal 

microscope.  

 

Movie 2-4: Imaging Tim-1 movement in response to latex beads. Jurkat T cells transiently co-transfected 

with Tim-1-GFP (green) and ZAP70-TagRFP (red) were incubated with anti-OKT3, anti-CD28 coated 
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latex beads. Mid-plane images were taken every 23 seconds over the course of 19 minutes in a heated 

chamber on an Olympus FluoView 1000 confocal microscope.  

  

Movie 2-5: Tim-1QGQ localizes to intracellular pools that can reside at the IS. Jurkat T cells transiently 

transfected with Tim-1QGQ-GFP (green) and ZAP70-TagRFP (red) were incubated with Raji cells 

incubated with 1mg/mL SEE and stained with Cell Tracker Blue (blue). Mid-plane images were taken 

every 6.7 seconds over the course of 14 minutes in a heated chamber on an Olympus FluoView 1000 

confocal microscope.  
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