METEOROLOGICAL SERVICE

TECHNICAL NOTE No. 44

DYNAMO

A ONE-DIMENSIONAL PRIMITIVE EQUATION MODEL

PETER LYNCH, M.Sc., Ph. D.

DYNAMO

Abstract.
A one-dimensional primitive equation model has been devised and programmed. Despite its great simplicity, it is capable of simulating several phenomena of importance in atmospheric dynamics, and should prove useful as a pedagogic aid and in meteorological research.

In this report the basic model equations are derived, their linear normal-mode solutions are investigated and their energetics are studied. The numerical formulation of the model is described, and the computer implementation is outlined. A few simple model runs are discussed, and suggestions for several other applications are offered.

1. INTRODUCTION

This note describes a simple numerical model which may be used to study the large-scale motions of the atmosphere. The model was originally designed to test initialization schemes, but it should have quite general applicability as a research tool and as a teaching aid: it may be used to simulate simple atmospheric flows; to investigate the structure and energetics of linear normal modes; to demonstrate the phenomenon of computational instability; to test various timestepping schemes, and other finite difference schemes. The model may easily be modified to filter gravity waves. Other effects such as orographic forcing can easily be incorporated. There is a possibility for growth of eddy motions in the presence of suitable mean flows (hydrodynamic instability), or of flow of energy back and forth between mean flow and eddies (vacillation).

The model is based on the primitive equations for an incompressible fluid in hydrostatic balance, i.e. the shallow water equations. The momentum equations are differentiated to form vorticity and divergence equations: this makes the β-effect explicit and all further latitudinal dependence can be
supressed. Thus the model is one-dimensional in space. All spherical terms are neglected. There results a set of three prognostic equations for the vorticity, divergence and geopotential. After each timestep the horizontal velocity components can be calculated by solving two Poisson equations for the stream-function and velocity potential. The model has no external forcing, ie, the bottom boundary is assumed to be flat.

The normal mode solutions of the model consist of rapidly travelling inertia-gravity waves, which move in both directions, and slow Rossby waves which move only westward (relative to the mean flow).

Since the equations are non-linear they cannot in general be solved analytically. They are expressed in terms of finite differences on a discrete grid and the resulting algebraic system is solved numerically. The boundary conditions are specified by assuming spatial periodicity for all dependent variables. The spatial domain is staggered, with different variables being evaluated at different points. Values not available directly are obtained by averaging. An Adams-Bashforth timestepping scheme is used, but this can easily be changed, egg. to a leapfrog scheme.

The kinetic and available potential energy, as well as various other diagnostics, are calculated at each timestep; the total eddy energy is conserved in the absence of a mean flow; a non-vanishing mean flow may provide a source of energy for the growth of the eddy motions or for periodic exchange of energy between mean flow and eddies.

2. DERIVATION OF THE EQUATIONS

Since the Shallow Water Equations are derived in Pedlosky (1979), and discussed at length there, they will be set down here without further ado. For a shallow rotating layer of homogeneous incompressible and inviscid fluid above a plane and acted upon by gravity they take the form

$$
\begin{equation*}
\frac{d u}{d t}-f v+\frac{\partial \varphi}{\partial x}=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d v}{d t}+f u+\frac{\partial \Phi}{\partial y}=0 \tag{2}\\
& \frac{d \Phi}{d t}+\Phi\left(u_{x}+v_{y}\right)=0 \tag{3}
\end{align*}
$$

Here x and y are eestward and northward coordinates, u and v are the corresponding velocities, t is time, $\phi=g h$ is the geopotential, where h is the depth of fluid above a flat surface, $f=f_{0}+\beta y$ is the Coriolis parameter and f_{0} and β are assumed constant.

In order to eliminate the y-dependence while still retaining the β-effect, we derive vorticity and divergence equations by combining derivitives of the momentum equations. The zonally averaged flow is assumed to be in geostrophic balance:

$$
\begin{equation*}
f \bar{u}=-\bar{\Phi}_{y} \tag{4}
\end{equation*}
$$

where \bar{u} is taken as constant. We express the total flow as

$$
u=\bar{u}+u^{\prime}(x, t) ; \quad v=v^{\prime}(x, t) ; \quad \Phi=\bar{\Phi}(y)+\Phi^{\prime}(x, t)
$$

where we note that all quantities other than are assumed to be independent of y. After subtracting the mean flow (4) from (2) the vorticity and divergence equations are derived by forming the combinations $\left((2)_{x}-(1)_{y}\right)$ and $\left((1)_{x}+(2)_{y}\right)$ respectively. The resulting equations can be written

$$
\begin{gather*}
\zeta_{t}+(u \zeta)_{x}+f \delta+\beta v=0 \tag{5}\\
\delta_{t}+(u \delta)_{x}-f \zeta+\beta u^{\prime}+\Phi_{x x}=0 \tag{6}
\end{gather*}
$$

where u ' is the deviation from the mean zonal flow and the vorticity and divergence are given by the expressions

$$
\zeta=v_{x} ; \delta=u_{x} .
$$

Using (4) the continuity equation (3) can be written in the form

$$
\begin{equation*}
\Phi_{t}+(u \Phi)_{x}-f \bar{u} v+\bar{\Phi} \delta=0 \tag{7}
\end{equation*}
$$

The equations (5), (6) and (7) are the basic equations of the model. They
form a set of three equations for the three independent variables vorticity, divergence and geopotential, with two independent variables, x and t. The only y-dependence is the parametric dependence of f and $\bar{\Phi}$ on y, and scaling arguments can be used to show that this is small so that f and $\bar{\Phi}$ may be assumed to be constant where they appear undifferentiated.

3. LINEAR NORMAL MODES

To investigate the simple types of wave-motion supported by the above system the equations are linearized about a state of rest and the perturbation quantities are assumed to be hermonic in x and t :

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{l}
\hat{u} \\
\hat{v} \\
\hat{\phi}
\end{array}\right] \exp [i k(x-c t)]
$$

Then (5), (6), and (7) become three homogeneous equations for the amplitudes $(\hat{u}, \hat{v}, \hat{\oplus})$. The condition for a non-trivial solution is that the system determinant should vanish. This gives a cubic equation for the phase-speed:

$$
c\left(c+\beta / k^{2}\right)^{2}-c\left(\overline{\mathbb{\phi}}+(f / k)^{2}\right)-\left(\beta / k^{2}\right) \bar{\Phi}=0
$$

The three roots are estimated by making simple assumptions about the magnitude of the phase-speed. These assumptions can then be justified a posteriori.

If $|c|$ is small the cubic term is neglected, giving

$$
c=c_{R}=-\left(\beta / k^{2}\right) /\left[1+f^{2} / k^{2} \bar{\Phi}\right]
$$

This is the Rossby wave phase-speed. Equations (5) and (6) then tell us that this solution is in approximate geostrophic balance for v and that u is much smaller than $v, i . e$, the wave is quasi-nondivergent. The Rossby waves always
travel westward relative to the mean flow.
If we assume that $|c| \gg\left|c_{R}\right|$ the constant term in (θ) is negligible and we get the two roots:

$$
c= \pm ل\left(\bar{\Phi}+f^{2} / k^{2}\right)
$$

which are the phase-speeds of the gravity-inertia waves. The gravity waves travel in both directions with relatively large phase-speeds. They are divergent motions and typically have fairly small vorticity.

The quasi-geostrophic shallow water equations are derived in Appendix $A_{\text {; }}$ these equations filter out the rapid gravity-inertia waves and allow only the slow rotational modes.

It is worth noting that if either u or v vanishes identically then the present model has no non-trivial linear solutions; thus, none of the normal modes are purely non-divergent or pursly irrotational.

4. ENERGY CONSIDERATIONS

We consider the energy in a column of fluid of unit cross-section. The potential energy in the column is

$$
\int_{0}^{h} \rho g z d z=\frac{1}{2} \rho g h^{2}=\frac{1}{2 g} \rho \phi^{2}
$$

where $h(x, t)$ is the totel depth of the fluid. When the fluid surface is perfectly flat, $h(x, t) \equiv \bar{h}$, constant, the system is in a state of minimum potential energy. Using this depth as the reference value, we define the available potential energy as

$$
\begin{equation*}
\int_{\bar{h}}^{h} \rho g(z-\bar{h}) d z=\frac{\operatorname{li}}{\operatorname{z}} \rho g(h-\bar{h})^{2}=\frac{1}{2 g} \rho 0^{, 2} \tag{9}
\end{equation*}
$$

This gives us a measure of the potential energy in the column which is available for conversion into kinetic energy.

The kinetic energy in the column con be partitioned into contributions due to the mean flow and to the eddies. The eddy kinetic energy is:

We may note that this depends upon the total depth, whereas the available potential energy (9) depends only on the deviation from mean depth.

Energy equations are derived in the usual manner: equation (1) is multiplied by $\rho \oplus u$ '. (2) by $\rho \nsubseteq v$ and (3) by $\rho \omega^{\prime}$: they are then added together and integrated with respect to x. After some algebra we arrive at the equation for the energy budget of the eddy motion:

$$
\begin{equation*}
\frac{d}{d t} \int\left[\frac{1}{2} \rho\left(u^{\prime}+v^{2}\right) \phi+\frac{1}{\rho} \rho \phi^{, 2}\right] d x=-\int\left[\rho v\left[\frac{1}{2}\left(u^{\prime}+v^{2}\right)+\phi^{\prime}\right] \frac{\partial \bar{\Phi}}{\partial y}\right] d x \tag{11}
\end{equation*}
$$

The left hand side is the temporal rate-of-change of the eddy kinetic plus available potential energy; the right hand side represents the conversion from mean flow energy to eddy energy; clearly, if the mean flow vanishes ($\bar{u}=\bar{\Phi}_{y}=0$) the total eddy energy remains constant.

In the present, one dimensional, model the eddy kinetic energy can be split into contributions due to the rotational and divergent motions as follows:

$$
K=K_{\psi}+K_{\chi} ; K_{\psi}=\frac{1}{2} \rho\left(\nabla_{\psi}\right)^{2} \phi=\frac{1}{2} \rho v^{2} \phi ; K_{\chi}=\frac{1}{2} \rho\left(\nabla_{\chi}\right)^{2} \phi=\frac{1}{2} \rho u^{2} \phi .
$$

The values of these, and various other, energy quantities are calculated at each timestep by the procedure ENERGY. Their evolution can give us valuable information about the dynamics of the motion being considered.

Note that equation (11) allows the possibility for growth of eddy energy with time, and this suggests that the mean flow may be unstable to small perturbations. You may wish to consider the linear normal modes in the presence of a mean flow to see if there are circumstances in which their phase speeds may become complex. No further discussion will be given here,

Another possibility is that energy may oscillate back and forth between the mean flow and the eddies, leading to a vacillating regime (see Holton and Mass, 1976). It is probable that a proper treatment of this phenomenon would require an extension of the present model to simulate the energetics of the meen flow; but such an extension would not be too difficult.

5. NONDIMENSIONALIZATION

In order to clarify the relative magnitude of the various terms in the equations of motion it is convenient to nondimensionalize the equations by defining characteristic scales for length, time and velocity. It is also convenient numerically to have the principal terms of order unity. Scale analysis is discussed in Holton (1972) and Haltiner and Williams (1980), so the treatment here will be brief. We introduce length and velocity scales L and V and scale time by f^{-1} (alternatively we could use the advective time-scale (L/V)). The geopotential is scaled by $f \mathrm{LV}$ (suggested by the geostrophic relationship; we could have used v^{2} or $\left.(f L)^{2}\right)$. Various nondimensional combinations pop up when we scale the equations: we define

$$
R o \equiv(V / f L) ; R_{\beta} \equiv(\beta L / f) \sim(L / a) ; R_{F} \equiv \overline{\emptyset /(f L)^{2} \equiv\left(L_{R} / L\right)^{2} .}
$$

Here Ro is the Rossby number; R_{β} is a measure of the importance of the β-effect, determined by the scale of the motion; R_{F} is the reciprocal of the Froude number, and relates the length scale of the motion to the Rossby radius of deformation, $L_{R}=\sqrt{ } / \bar{f} f$.

The equations of motion, (5), (6) and (7), may now be written in nondimensional form

$$
\begin{gather*}
\zeta_{t}+R o(u \zeta)_{x}+\delta+R_{\beta} v=0 \tag{13}\\
\delta_{t}+R o(u \delta)_{x}-\zeta+R_{\beta} u^{\prime}+\varphi_{x x}=0 \tag{14}\\
\varphi_{t}+R o(u \varphi)_{x}-R_{0} u_{0} v+R_{F} \delta=0 \tag{15}
\end{gather*}
$$

Note that if an advective timescals were chosen instead of f^{-1}, the time derivatives in these equations would be multiplied by Ro. Such a choice is made for deriving the quasi-geostrophic approximation to the above set of equations (see Appendix A).

6. NUMERICAL FORMULATION

The three equations (13), (14) and (15) provide a means for predicting ζ, δ and Φ, given their values at an initial time. Since these equations are nonlinear (and the nonlinear advection process plays a crucial rôe in atmospheric dynamics) they must be solved numerically, If the derivatives are approximated by finite differences in space and time the differential system is replaced by an algebraic system. The dependent variables are specified at points on a discrete grid in space and at isolated instants in time, From the values at (and prior to) a particular instent, t, the algebraic equations are used to predict their values at the next instent, $t+\Delta t$. This process is repeated until the required forecast length is reached.

The initial values normally involve specification of u, v and 1 . The initial values of ζ and δ are obtained by finite differencing of the velocities. The equations are then used to step forward Δt. This gives us updated values for ζ, δ and ©. The new velocities must be retrieved by solving for the velocity potential and stream- function:

$$
v=\nabla_{x}+k x \nabla_{\psi} ; \nabla^{2} x=\delta ; \nabla^{2} \psi=\zeta
$$

In the present, one-dimensional case we solve the equations

$$
\begin{equation*}
x_{x x}=\delta ; \psi_{x x}=\zeta \tag{16}
\end{equation*}
$$

with periodic boundary conditions, and derive the velocities from

$$
\begin{equation*}
u=\chi_{x} ; v=\psi_{x} \tag{17}
\end{equation*}
$$

This must be done at every timestep, since the velocities appear explicitly in the equations and are needed to perform the next timestep. The 1-D "Poisson" equations (16) are solved by a simple method described in Appendix B, and the velocities are obtained immediately from (17) by finite differencing.

The relationship between the velocities (u, v) and the prognostic variables (ζ, δ) suggests that we specify them at alternate points of a grid staggered in space. The velocitios are specified at "half-points" and the vorticity, divergence and geopotential at "whole-points":

Velocities at whole points or ζ, $\delta, 4$ at half points are obtained by averaging, We define some finite difference operators:

$$
\left(q_{m}\right)_{x}=\left(q_{m+i}-q_{m-\frac{\psi}{2}}\right) / \Delta x ;\left(\overline{q_{m}}\right)=\frac{1}{2}\left(q_{m-i}+q_{m+\xi}\right)
$$

Applying these operators successively we find that

$$
\left(\overline{q_{m}}\right)_{x}=\left(q_{m+1}^{-q_{m-1}}\right) / 2 \Delta x ;\left(q_{m}\right)_{x x}=\left(q_{m \cdot 1}-2 q_{m}+q_{m-1}\right) /(\Delta x)^{2}
$$

These forms are sufficient to approximate the derivatives on the staggered grid.

It is obvious in most cases how the finite differencing and averaging operators should be applied to approximate terms in the equations. However, in the case of the advection terms several possibilities present themselves; we choose the simplest form:

$$
\left.\frac{\partial(u q)}{\partial x}\right|_{m} \rightarrow \frac{u_{m+\xi} \cdot \frac{1}{2}\left(q_{m}+q_{m+1}\right)-u_{m-\frac{1}{2}} \cdot \frac{1}{2}\left(q_{m-1}+q_{m}\right)}{\Delta X}=\left.(u \bar{q})_{x}\right|_{m}
$$

Other possibilities include using a double interval, or splitting up the derivative before differencing; the more complicated forms may have the advantage of numerically preserving various conservation properties of the continuous equations.

The spatially differenced equations may now be written in the form:

$$
\begin{align*}
& \zeta_{t}=-\left(\operatorname{Ro}(u \bar{\zeta})_{x}+\delta+R_{\beta} \bar{v}\right) \tag{18}\\
& \delta_{t}=-\left(R_{0}(u \bar{\delta})_{x}-\zeta+R_{\beta} \bar{u}+\Phi_{x x}\right) \tag{19}\\
& \Phi_{t}=-\left(R_{0}(u \bar{\Phi})_{x}-\operatorname{Rou}_{0} \bar{v}+R_{F} \delta\right) \tag{20}
\end{align*}
$$

The time-differencing is done by an Adams-Bashforth scheme (Mesinger and Arakawa, 1976, [MA]). For the simple equation

```
dY/dt = F(Y,t.)
```

the values of Y at the time-levels n and $n+1$ are related (exactly) by:

$$
Y^{n+1}=Y^{n}+\int_{n \Delta t}^{(n+1) \Delta t} F(Y, t) \cdot d t
$$

In the Adams-Bashforth scheme we approximate $F(Y, t)$ by a value at the centre of the interval Δt obtained by linear extrapolation using the known values F^{n-1} and F^{n}. This gives

$$
Y^{n+1}=Y^{n}+\Delta t\left(\frac{3}{2} F^{n}-\frac{1}{2} F^{n-1}\right)
$$

The properties of the scheme are discussed in [MA]. It is of second order accuracy and has a computational mode which is damped. The amplification of the physical mode is $\left[1+\rho^{4}\right]$ (where $\rho=c_{\operatorname{mex}} \Delta t / \Delta x$) which implies marginal instability. This satisfies the Von Neumann necessary condition for boundedness of the solution for finite t, and experience shows that as long as Δt is chosen sufficiently small the amplification is insignificant. Since the initial conditions refer to a single time we must begin the integration with a two level scheme; therefore, the first timestep is performed using an Euler forward scheme.

You may wish to experiment with other timestepping schemes. The leapfrog scheme is stable for $p<1$ but its computational mode is neutral rather than damped; the trapezoidal scheme looks ideal (see [MA], figure 2.1) but it is implicit; there are numerous other options.

7. IMPLEMENTATION

A brief overview of the computer program which implements the model is given here. This section should be read in conjunction with the program listing in Appendix C, where some more details are given in comments within the code. Copies of the source code on disk are available on request.

The main program is called DYNAMO. The source version (in FORTRAN) is in the file DYNAMO.FOR; global variables are specified in the COMMON blocks in DYNAMO.COM; control parameters are read from DYNAMO.CDS and output goes to the file DYNAMO.LPT.

The main program contains calls to a number of routines whose purpose or function is described briefly here:

GETPAR	Reads control cards and defines various constants
ICS	Sets up the initial fields for the run
LAPIN	Initializes the fields (not implemented)
STEPON	Performs a single timestep
OUTPUT	Prints out the final fields and various diegnostics.

Various other subroutines are called; their purposes are given here:

ENERGY Calculation of various energy integrals
POISID Solution of 1-D Poisson equations with periodic B.Cs.
DOXBAR, DDXF, DOXB, DDXX Calculation of finite differences
XMEANF, XMEANB Averaging operators
ENDS Fill in end-values of a periodic array
MEMOVE Move fields around in core
PLOTLN Draw graphs on the lineprinter.
HOVMOL Plot a zebra chart on the lineprinter

The meanings of the more important variables and arrays are given below:
(0) MAXIMUM DIMENSIONS FOR ARRAYS

PRRRMETER NPX $=201$, NPT $=4001$ Space and time array sizes.
PARAMETERS CONTROLING THE FLOW OF CALCULATIONS
LINEAR .TRUE, Ignore nonlinear terms
IOG TRUE. Use quasi-geostrophic equations (not implemented)
INIT .TRUE. Initialize the fields (not implemented)
IPRINT .TRUE. Print out various diagnostics.
NPRINT Number of timesteps between printouts
ICNUM Indicator for the initial conditions.
IHOV, NXHOV, NTHOV Control for Hovmöller diagrams.

VARIOUS CONSTANTS, PARAMETERS AND SCALES

```
PI=3.14159265
FCOR = 1.E-04 (Coriolis parameter) BETA = 1.E-11 (Beta parameter)
UBAR Mean Zonal Wind UO Nondimensionalized UBAR
FIBAR Mean Geopotential FIO Nondimensionalized FIBAR
RF,RB,RB Nondimensional numbers (Froude, Rossby, Beta; see text)
GRAV = 9.81 Gravitational acceleration
SXL,SXT, SXV, SXDV, SXFI Scales for length, time, velocity,
    vorticity (and divergence) and geopotential.
INDEPENDENT VARIPBLES, INCREMENTS, GRIDSPECS, ETC.
REAL. X(0:NPX),T(0:NPT) Spatial and temporal independent variables
    (required for convenience in plotting results)
NX Number of points in the spatial domain NXP1 = NX +1
NSTEPS Number of timesteps in run
DX \Deltax, Grid distance DT \Deltat, Timestep
DEPENDENT VARIPBLES
```

 REAL U (\(0: N P X\)) \(V(0: N P X)\) Horizontal velocities
 REAL FI(\(0: N P X\)), VORT \((0: N P X)\), DIV (\(0: N P X\)) Geopotential, vorticity, divergence
 REAL FIOLD (\(O ; N P X\)), VOROLD \((0: N P X), D I V O L D(O: N P X)\) Old values of \(\oplus, \zeta, \delta\)
 (Old values may not be required but are included for convenience)
 REAL PSI(\(0: \mathrm{NPX}\)), \(\mathrm{CHI}(0: \mathrm{NPX})\) Stream function, velocity potential
 RIGHT•HAND SIDES (AT TWO TIMES)
REAL RHSIV (O:NPX) ,RHSID(O:NPX), RHSIC(O:NPX) New values
REAL RHS2V ($0: N P X$) , RHS2D($0: N P X), R H S 2 C(0: N P X) \quad$ Old values
(Old values may not be required but are included for convenience)
ENERGY OUANTITIES
REAL KEROT (O:NPT), KEDIV(O:NPT), KETOT (O:NPT)
Eddy rotational, divergent and total kinetic energy
REAL RPE (0:NPT), APLUSK(D:NPT)
Eddy available potential and total (APE. + KE) energy
RERL SOURCE (0:NPT), DOTAPK (O:NPT)
Conversion from zonal mean, and rate-of-change of eddy energy.

The array storage of dependent variables works as follows: The geopotential, vorticity and divergence at point N are stored in $\operatorname{FI}(\mathbb{N}), \operatorname{VORT}(N)$ and $\operatorname{DIV}(N)$. The velocity potential and stream function at these points are stored in $\mathrm{CHI}(\mathrm{N})$ and $\operatorname{PSI}(N)$. The velocities at $N-\frac{1}{2}$ are stored in $U(N)$ and $V(N)$. Thus, to get U from CHi we call DDXB, the backward difference; to get the average of U at whole points we call XMEANF, the forward average; care is needed to difference and average in the correct direction. All the dependent variables are periodic, with period $N X$: Thus, we con set $U(N X)=U(0)$ and $U(N X P 1)=U(1)$.

8. APPLICATIONS

Sample Dutput

In this section we present selected output from a few trial runs. which have been chosen to illustrate some simple phenomena which can be simulated by the model. The input parameters in all cases are as follows: Gridpoints $N X=50$; Gridlength $\Delta x=200 \mathrm{~km}$; Channel length $L=10000 \mathrm{~km}$; Timestep $\Delta t=100 \mathrm{sec}$.

Example (1): A Rossby Wave

The initial conditions for the first example are chosen as follows:

$$
\Phi=\cos (2 \pi x / L): u=0 ; v=\Phi_{x} \quad \text { (ICNUM=2) }
$$

i.e., there is a wavenumber one geopotential disturbance, and the wind is in geostrophic balance with it. The main component of this initial field (ICNUM=2) is a Rossby wave. There are also small gravity wave components, since the pure Rossby wave has a small but non-vanishing divergence whereas these initial

${ }_{\infty}^{\infty} 0_{0}^{\infty}$

MANAT

$$
\approx \approx
$$

Figure 1. Hovmoeller diagram of geopotential. Horizontal axis $0<\mathrm{X}<10$, 000 KM. Vertical axis: $0<\mathrm{T}<900 * 100 \mathrm{sec}$.
(a) Zero zonal flow
(b) UAR $=100 \mathrm{~m} / \mathrm{s}$.
conditions are nondivergent. In figure la we show a plot of height against x and t (a so-called Hovmöller diagram). The westward movement of troughs and ridges is clear. The corresponding solution for the same initial conditions but with a mean zonal wind $\bar{u}=100 \mathrm{~m} / \mathrm{s}^{-1}$ is shown in figure 1 l . The advective effect of the mean flow is clear. You may like to check the phase-speed of the solution against the theoretical Rossby phase speed (see the equation following (B): $\quad f=1 . E-04 \mathrm{~s}^{-1} ; \quad \beta=1 . E-11 \mathrm{~m}^{-1} \mathrm{~s}^{-1} ; \quad k=2 \pi / L, \quad L=1 . E+07 \mathrm{~m}$; - $\bar{\Phi}=1 . E+05 m^{2} \mathrm{~s}^{-2}$). A three-dimensional plot of the Rossby wave solution (for $\bar{u}=0$) is shown on the title page: note the high frequency ripples running along the ridge; these are due to the interference of the small amplitude gravity wave components present in the initial conditions.

Example (2): Timescales of the Solutions

The value of the geopotential at a central point of the grid, resulting from several different initial conditions, is plotted ageinst time in figure 2. The initial conditions are

| (2a) $\Phi=\cos (2 \pi x / L) ; u=0 ; v=0$ | (ICNUM=1) |
| :--- | :--- | :--- | :--- |
| (2b) $\Phi=\cos (2 \pi x / L) ; u=0 ; v=\Phi_{x}$ | (ICNUM=2) |
| (2c) $\downarrow=\cos (2 \pi x / L) ; u=0 ; v=0$ | (ICNUM=3) |

These initial conditions may be described as follows: (2a) represents a mixture of two gravity-inertia waves and a Rossby wave (no component is obviously dominent); (2b) is essentially a Rossby wave (with small G-I wave components); (2c) represents an eastward travelling gravity-inertia wave. The figure clearly shows the different timescales of the evolving geopotential for the differing types of motion. The rotational motion (2b) has a much slower evolution than the motion containing large grevity-wave components. It is the principal goal of the initialization process to remove the large, high frequency oscillations which arise from the presence of unrealistically large gravity-inertia components in the initial data used for numerical forecasts. (The changing amplitude of the geopotential, evident in figure $2 a$ and $2 c$, is due to interference between different components; the total eddy energy of the disturbances remains constant, as we will see in the next example).

B

Figure 2. Time evolution of the geopotential at a central point
(a) ICNUM $=1$
(b) ICNUM $=2$
(c) ICNUM $=3$

Example (3): Conservation of Eddy Energy
When the mean zonal wind vanishes, there is no physical source of energy which might enable a disturbance to grow with time: the total eddy energy remains constant (see equation (11)). We have not mede any effort to ensure that the numerical scheme reflects this conservation property; however, if the model is to be of any use for simulating atmospheric phenomena, the energy budget must be properly represented. In this example we start from initial conditions (2c) above (ICNUM=3) and calculate the eddy kinetic, available potential and total energy at each timestep. Plots of these as functions of time are shown in figure 3. These clearly show how the energy may flow back and forth between the kinetic and potential forms, due to interaction between different wave components. Figure $3 c$ demonstrates the conservation of total eddy energy. (N.B. The Adams Bashforth scheme is marginally unstable; if an extended integration is carried out the energy will eventually begin to grow in an unacceptable way; you may like to try this, and then rerun with a shorter timestep)

Example (4): Wave - Mean Flow Interaction

Only a very simple case is considered here: the zonal mean wind is taken as $\bar{u}=100 \mathrm{~m} \mathrm{~s}^{-1}$; the initial conditions are (2a) above (iCNUM=1) and the model is integrated for 4000 timesteps ($\Delta t=100 \mathrm{~s}$, so forecast length is about $4 \frac{1}{2}$ days). Equation (11) shows that the eddy energy may change in time when there is a non-vanishing zonal flow. The total eddy energy (KE+PPE) is shown in figure 4a; we see that there is a quasi-periodic exchange of energy between the mean flow and the eddy motion, and that it hes two timescales (it is reminiscent of the phenomenon of beats between waves with nearly equal frequencies). The right hand side of equation (11) is calculated at each timestep (it is called SQURCE in the code) and plotted in figure ab; the time rate of change of the eddy energy is obtained by finite differencing of the values shown in figure $4 a$, and the result is plotted in figure $4 c$; it is in excellent agreement with the energy source values in figure 4 b .

Figure 3. Eddy energy for the initial conditions $\operatorname{ICNUM}=3$
(a) Kinetic energy
(b) Available potential energy
(c) Total eddy energy

Figure 4. Eddy energy in the presence of a zonal flow (UBAR $=100 \mathrm{~m} / \mathrm{s}$)
(a) Total eddy energy (b) Source term in EQN (11)
(c) Time rate-of-change of total eddy energy

It would appear that this modsl is capable of simulating more complicated interactions between the mean flow and the eddy motions. No further consideration of this matter is presented hers. Mors specifically, the question of hydrodynamic instability of the eddy motion has not been addressed, and is left for your consideration.

Suggestions for Further Applications

There follows a hastily assembled list of suggestions for making use of the model DYNAMO. I would be grateful to hear of your experiences with any new tests, or any bugs found, etc.

First some trivial runs to gain familiarity:
(1): Run the model with verious initial conditions (ICNUM) to produce the Rossby and Gravity-inertia waves before your very eyes.
(2): Switch on IHOV to generate Hovmoller diagrams for these.
(3): Run with various velues of Δt to illustrate computational instability when the CFL criterion is violated.
(4): Run for extended period to illustrate the ultimate breakdown due to the marginal instability of the Adams-Bashforth scheme; cure this by reducing the timestep.

More Advenced Applications:
(1): Change the timestepping scheme, e.g. use Euler forward (unstablel), Euler backward or Matsuno, Leapfrog. Trapezoidal (implicit); these are all discussed in Mesinger and Arakawa (1976).
(2): Split the integration and use a semi-Lagrangian scheme for advection (Bates and McDonald, 1982).
(3) Perform extended runs (perhaps with leapfrog scheme) to check for non-linear instability; see if this can be cured by reformulating the finite differencing of the advection terms. Does non-linear instability occur with a semi-Lagrangian scheme?
(4): Modify the model to use either the primitive equations or the filtered equations (see Appendix A). Compare the handling of Rossby waves by
the two methods.
(5): Derive the equation expressing Conservation of Potential Vorticity; celculate this quantity numerically and ses if the model is conserving it properly.
(6): It is easy to incorporate mountains into the model. What sort of motion is forced by orography? How does it effect the energy balance of the eddy motion? Note the very different response for small and large mean flow.
(7): Extend the model to predict the mean flow. Calculate the energetics of the mean flow and investigate the phenomenon of vacillation (this is an essentially non-linear phenomenon, and there is no simple analytical description of it).
(8): Investigate the possibilities for hydrodynamic instability of the eddy motion in the presence of e non-zero zonal mean flow. What are the energetics of the instability? What (if any) is its geophysical relevence?

In doing any of the above experiments, do not be afraid to make even major changes to the model code. Clean copies of the original code ars there for the asking (e.g. you can send me a request using the MAIL facility on the DEC 20-50).
$======x=00000000=======$

APPENDIX A: THE FILTERED EQUATIONS.

The quasi-geostrophic approximation to the shallow water equations is derived here (for more details see Haltiner and Williams, chapter 3). Equations (5), (6) and (7) are nondimensionalized as in section 5 but with an advective timescale. They take a form similar to (13). (14) and (15) but with the time
derivativas multiplied by Ro. Since the divergence is small compared to the vorticity we separate the wind into rotational and divergent parts

$$
v=v_{\phi}+v_{x} ; v_{\phi}=k \times \nabla_{\psi} ; v_{x}=\nabla_{x}
$$

and ignore the latter where it appears undifferentiated. We now assume that Ro $<1, R_{\beta}<1$ and $R_{F} \sim 1$, and drop all terms which are of order Ro or smaller. The resulting equations may be written (in dimensional form):

$$
\begin{gather*}
\frac{\partial \zeta}{\partial t}+\bar{u} \frac{\partial \zeta}{\partial x}+\beta v+f \delta=0 \tag{A1}\\
-f \zeta+\emptyset_{x x}=0 \tag{A2}\\
\frac{\partial \Phi}{\partial t}+\bar{u} \frac{\partial \Phi}{\partial x}-f \bar{u} v+\bar{\oplus} \delta=0 \tag{A3}
\end{gather*}
$$

Note that the divergence equation has become a diagnostic equation (i.e. it has no time derivative); it shows that the vorticity is geostrophic and gives the rotational wind:

$$
\begin{equation*}
\psi=\nabla^{\prime / f} ; v=\psi_{x}=\Phi_{x}^{\prime} / f \tag{A4}
\end{equation*}
$$

Equations (A1), (A2) and (A3) are the quasi-geostrophic equations for our one-dimensional model; although $|\delta| \ll|\zeta|$ the divergence terms in (A1) and (A3) are of the same magnitude as the other terms.

The equations (A1) and (A3) can be used to forecast the vorticity and geopotential. Alternatively, we cen eliminate δ between them and get the quesi-geostrophic potential vorticity equation :

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right)\left[\xi-(f / \bar{\Phi}) \Phi^{\prime}\right]+v \bar{\Phi} \frac{\partial}{\partial y}[f / \bar{\phi}]=0 \tag{A5}
\end{equation*}
$$

With the use of (A2) and (A4) this can be written in terms of Φ, alone. A diagnostic equation for the divergence is obtained by eliminating the time derivatives between (A1) and (A3):

$$
\begin{equation*}
\delta_{x x}-\left(f^{2} / \bar{\phi}\right) \delta=(\beta / \bar{\phi}) 0_{x}+(\bar{u}) 0_{x x x} \tag{A6}
\end{equation*}
$$

This is the quasi-geostrophic divergence equation and relates the divergence to the geopotential. It is a (1-D) Helmholtz-equation for δ when 0 is known.

The system (A1), (A3) and (A6) are sometimes called the Filtered Equations: they allow only the slow quasigeostrophic motion; the fast gravity inertia modes are filtered out; you may check this by deriving the linear normal mode solutions of these equations and comparing the results with those (in section 3) for the primitive equetions. The model DYNAMO may easily be modified to use the filtered equations. The LOGICAL variable IOG should be used to switch from one system to the other. A routine HELMID, analogous to POIS1D but for a Helmholtz equation, will have to be written. You could, for example, try a successive overrelaxation (SOR) method; let me know how you gat on.

APPENBIX B: SOLUTION OF POISSON'S ELUATION.

After each forward step the new values of the velocities u and v must be derived from the vorticity ζ and divergence δ. If we solve two Poisson equations for the stream-function ψ and velocity potential x :

$$
\begin{equation*}
\nabla^{2} \psi=\zeta \quad \nabla^{2} x=\delta \tag{B1}
\end{equation*}
$$

the velocities can be obtained by differentiation:

$$
\begin{equation*}
v=k x \nabla_{\psi}+\nabla_{x} \tag{B2}
\end{equation*}
$$

In the present case we assume that the dependent variables are independent of y, are specified on the discrete grid $\left\{x_{0}=0, x_{1}, x_{2}, \cdots, x_{N}=1\right\}$, and are periodic in x. Thus we must solve two equations of the form

$$
\begin{equation*}
d^{2} \phi / d x^{2}=\rho \quad ; \quad \phi(0)=\phi(L) \tag{B3}
\end{equation*}
$$

Since the reference potential is arbitrary we can choose $\phi(0)=0$. The discrete equations (taking $\Delta x=1$) can then be written

The first equation is multiplied by one, the second by two, etc., and the
resulting equations added up to obtain

$$
N \phi_{1}=\sum_{n=1}^{N} n \rho_{n}
$$

this gives us ϕ_{1}; the first of (B4) then gives ϕ_{2}, the second ϕ_{3}, and so forth until the full solution is obtained. The value of ϕ_{N}, which should be zero, can be used to check the effects of roundoff error. The entire algorithm is coded in the procedure POISID. When the stream-function and velocity potential have been derived the velocities on the staggered grid are obtained from the equations

$$
u_{n}=\left(x_{n}-x_{n-1}\right) / \Delta x ; v_{n}=\left(\psi_{n}-\psi_{n-1}\right) / \Delta x
$$

by calling the procedure DDXB. (The method of solution described here was found in Hockney and Eastwood, 1981.)

References

Bates, J.R. and R. McDonald, 1982: Multiply-upstream semi-Lagrangian advective schemes: analysis and application to a multi-level primitive equation model. Mon. Weather Rev., 110, 1831-1842.

Haltiner, G.J. and R.T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley \& Sons, New York, 477pp.

Hockney, R.W. and J.W Eastwood, 1981: Computer Simulation Using Particles. McGraw-Hill Inc., Now York, 540pp.

Holton, J.R., 1972: An Introduction to Dynamic Meteorology. Academic Press, New York, 319pp.

Holton, J.R. and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 2218-2225.

Mesinger, F. and A. Arakawa, 1976: Numerical Methods Used in Atmospheric Models. WMO, GARP Publication Series, No. 17., Vol. 1.

Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verleg, New York. Heidelberg, Berlin. 624pp.

PROGRAM OYNAMO

CALL. THE INITIALIZATION PROCEDURE
(INIT) CALL LAPIN \& NOT IMBLIMENTED IN THIS VSN.
ENO
SUBROUTINE GETPAR
dEFINE CONSTANTS AND PARAMETERS ANO SET UP THE
GRID. INITIALIZE FLOW cONTROL VARIABLES FOR THE RUN
INCLUDE DYNAMO, COM.
DOUBLE PRECISION STRING
SATA PI/3.14159265/, FCOR/A.E-04/,BETA/1.6E-11/,GRAV/9.81/
SOME SCALES
DATA SXL/1,E+06/.3XV/10.1

```
SXT =1./FCOR 湆 TIME SCALE
SXDV = SXV/SXL 
SXFI = SXL*SXVV/SXT I SCALE FOR GEOPOYENTIAL
```

read control parameters for the flow of computations
READ (5,*) STRING,LINEAR
READ (5,*) STRING,IOG
READ (5, *) SIRING,IDG
READ (5,*) STRING,IPRINT
READI5,*) STRING,NPRINT
WRITE $(6,900)$ LINEAR,IOG,INIT,IPRINT,NPRIN
FORMAT (/' DYNAMO "/" RUN CONTROL PARAMETERS \%
x
x
LINEAR ",L1,' aG ',L1,' INIT ",L1,' IPRINT ",LI/
- print out intermediate resulis every •ifs, steps*)
SET UP THE INDEPENDENT VARIABLE DISCRETIZATION
READ (5, $\%$) STRING,NX
EAD $(5, *)$ GRIDLENGTH IN X=DIRECTION (METRES)
EAD (5,:) STRING.NSTEPS ! NUMBER OF TIMESTEPS FOR RUN
EAD (5,*) STRING.DT
$\begin{array}{ll}\text { NXP1 } & =N X+1 \\ \text { NEN }\end{array}$
ENX $=$ XLEN/1000. - CHANNEL LENGTH IN KM.
TLEN $=$ NSTEPS*DT
HLEN = TLEN/(60.*60.) : FORECAST LENGTH IN HOURS
WRITE 6,901) NX,LENX,DX,NSTEPS,HLEN, D
TYPE 901 , NX,LENX,DX,NSTEPS,HLEN,D
FORMAT(: GRIDPTS: I, I4, $3 x$
- CHANNEL LENGTH: $\because 16,{ }^{\circ} \mathrm{KM}$.
DX: •, -3PF6, 0, KM•
- TIMESTEPS: - 14.3x,
FORECAST LENGTH:',OPFS.1.' HOURS '
- TIMESTEP: , OPF 6.0, O SEC., $^{\prime}$

```
PERFORM THE INTEGRATIUN
    DO 1000 NS=1,NSTEPS
        NSTEP = NS
    ONTILUE CON<NSTEP
ERFORM THE INTEGRATION
NSTEP \(=\) NS
CONTIUE ONXNSTEP
```

print dut the final results
CALL OUTPUT
PRINT OUT THE FINAL RESULTS
CALL OUTPUT
Top

SUBROUTINE GETPAR
dEFINE CONSTANTS AND PARAMETERS AND SET UP THE
GRID. INITIALIZE FLUW CONTROL VARIABLES FOR THE
INCLUDE 'DYNAMO.COM.
DOUBLE PRECISION STRING

FORMAT (! MEAN ZONAL WIND UBAR $=, F 6.0$. $\mathrm{M} / \mathrm{S}^{\prime}$,
ROsSBY NU
PECIPROCAL BETA EFFECT
FIAMP $=1 ; E+03$
FIAMP $=$ FIAMP/SXFI i NON-DIM AMPLITUDE OF GEOPOTENTIAL
$X N X=F L O A T(N X)$
DO 100 NN $=0, N \times P 1$
XNN = FLOAT(NN)
NMMH $=$ FLOAT (NN) $-0,5$
(NN) $=0^{\circ}$
$1(N N)=0$.
$\cos N(N N)=\operatorname{CDS}(A M * 2 . * P I * X N N / X N X)$
OSNMH(NN) $=\operatorname{COS}(A M * 2, * P I * X N M H / X N X)$
IINN (NN) $=\operatorname{SIN}(A M * 2 . * P I * X N N / X N X$
SINNMH (NN) = SIN(AM*2,*PI*XNMH/XNX
CONTINUE
CALCULATE SOME PHASE-SPEEDS (SEE REPORT, SECTION 3) XLEN $=N X *(D X * \$ X L)$
$2 K=2 . * 9 I / W L E N$
CGRAV = SQRT(FIBAR + (FCOR/ZK)**2)
CROSB = - (BETA/ZK**2) ((1.+(FCOR**2/(FIBAR*ZK**2))
WRITE(6,92221) CGRAV,CROSB
TYPE 92221, CGRAY,CROSB
FORMAT(" WAVESPEEDS: CG, CR (1P2E12.3 /)

Go (101,102,103,104,105,:106,107,108),1CNUM
gTOP ICNUM OUTSIDE RANGE:
PURE GEOPOTENTIAL PERTURBATION: COMBINATION OF THREE WAVES. CALL VECCON (FIAMP, COSN,FI, O, NXP1) , GO 101000

PPRROX ROSSBY WAVE

CALL VECCON(FIAMP, COSN,FI, O,NXP1)
CALL ODXB(FI,V,NX,DX) ; GO TO 1000
aPPROX EASTWARD-TRAVELLING G-I WAVE
CALL VECCON(FIAMP, COSN,FI, O,NXPI)
UAMP $=$ FIAMP
CALL VECCON(UAMP,COSNMH, U,O,NXPI) ; GO TO 1000
APPROX WESTWARD-TRAVELLING G-I WAVE
CALL VECCON (FIAMP, COSN,FI, O,NXPI)
UAMP $=$ FIAMP
CALL VECCON(UAMP,COSNMH,U,0,NXP1), GO TO 1000
more accurate rossby mave
CONTINUE
$C=$ CROSB
CAMP $=(C / F I H A R) * F I A M P *(S X F I / S X V)$
VAMP $=2 K * F C O R /(2 K * * 2 * C+B E T A) *$ IIAMP
CALL VECCON(FIAMP,COSN,FI,O,NXP1)
CALL VECCON(UAMP, COSNMH, U, O,NXP1)
CALL VECCON(VAMP,SINNMH,V,O,NXP1)
RRAT10 RF \quad, IPEIO.1/)
READ (5, I) STRR FOR INITIAL CONDITIONS
TYPE 9901 , ICNUM
WRITE(6,9901) ICNUM

READ INDICATOHS FOQ HOVMOELLER DIAGRAM
READ(5,*) STRING, IHOV, NXHOV,NTHOV
WRITE $(6,9002)$, NXHOV, NTHOV
FORMAT: HOVMOELLER DIAGRAMS , L2,214/)

RETURN

SUBROUTINE ICS
DEFINE THE INITIAL CONDITIONS. THE VALUES SPECIFIED ARE FOR U, V, AND FI: THE INITIAL VALUES OF VELOCITY ARE SPECIFIED AT HALF POINTS (STARTING AT I=-1/2); THE VALUES INCLUDE 'DYNAMO.COM•

REAL KOUNT (20), PMASE(20),AMPL(20)
REAL COSN (0:201),SINN (0:201)
C
define the initial velocities and geopotential
C*****
OME SAMPLE 1.CS. ARE GIVEN HEREI. IF YOU WANT TO DEFINE
OTHER CONDITIONS, IDENTIFY THEM USING ICNUM >4.
continue

MORE ACCURATE EASTWARD GRAVITY WAVE
CALL YECCON(FIAMP, COSN,FI,O,NXPI) C
$C=$ CGRAVc
$C / F I B A R) * F I A M P *(S X F I / S X V)$
MORE ACCURATE WESTWARD GRAVITY WAVE
$C=$ CGRAV
CALL VECCR (BAR)*FTAMP*(SXF1/SXV)
CONTINUE \quad GOTO 1000 (
COMBINATION OF WAVES WITH A MINUS-FIVE-THIRDS SPECTRUM
AND GEOSTROPHIC WIND (INITIALIZATION TEST)
GIAMP
FIAMP $=$ FIAMP/SXF
POWER $=-(5.13$.
WRITE(6,9071) KMAX,POWER
FORMAT(R ICNUM 8 KMAX: ",14, WAVES, PUWER SPECTRUM: ',F8.4/)
KOUNT(KK) Z KK
AMPL (KK) $=$ FLOAT $(K K) \star \star$ POWER
PHASE (KK) $=\operatorname{RAN}(1) * 2,, * P I$
166 CONTINUE CALL PLOTLNKKOUNT,AMPL,1,KMAX,0.,0... AMPL •)
XNX = FLOAT(NX)
XNN $=$ FLOAT(NN)
$v(N N)=0^{\circ}$
SUM : 0.0
XKK $=$ KKaI, KMAX
SUM $=\operatorname{SUM} \bullet A M P L(X K K) * \operatorname{COS}(X K K * 2 . * P I * X N N / X N X+\operatorname{PHASE}(X K K))$
$F I(N N)=$ SUM*FIAMP
CALL DDXB
CONTINUE : GO TO 1000 :

C
© ****
continue
CALCULATE DIVERGENCE AND VORTICITY (AT WHOLE POINTS)
CALL. DDXF (V, VORT,NX,DX)
plot initial values of depenoent variables
IF (IPRINT) CALL PLOTLN(X,U $\quad 0, N X,-2 \ldots+2 \ldots$ INITIAL U ')
IF (IPRINT) CALL PLOILN(X,V $, 0, N X,-2, \ldots+2,1$ INITIAL V

IF (IPRINT) CALL PLOTLN(X,DIV, O,NX, 0., O., DIVERGENCE')

CALCULATE THE INITIAL ENERGIES.
CALL ENERGY(NSTEP)
save field values at a central puint for plotting NXH = NX/2
PTU(NSTEP) $=U($ NXH $)$
PTV(NSTEP) $=V(N X H)$
PIDIV(NSTEP) $=$ FI $(N X H)$
PTVORT(NSTEP) = VORT (NXH)
save values for the hovmoeller diagram uf fl. WRITE (IO) FI

REIURN
END
SUBROUTINE STEPON(NSTEP)
PERFORM SINGLE TIMESTEP FOR DYNAMO
INCLUDE : DYNAMO.COM.
GET RHS OF VORTICITY, DIVERGENCE AND CONTINUITY EQUATIONS AT THE PRESENT TIMELEVEL ANO PUT IN RHSIV, RHSID AND RHSIC (OLD VALUES ARE IN RHSZ IF NSTEP > 0).

$X N L=0.0$
(NON-LINEAR FACTOR

CALGULATE THE ADVECTION TERMS
CALL XMEANB (VORT, WORK2,NX) !
CALL XMEANB (DIV, WORK3,NX) I AVERAGE TO VELOLITY POINTS ALL XMEANB(FI ,WORK4,NX) !
00100 NN=O, NXP1
ORK2(NN) $=(U 0+X N L * U(N N)) * W O R K 2(N N)$
WORK3(NN) $=(U O+X N L * U(N N)) *$ WORK $3(N N)$
WORK4(NN) $=($ UO $+X N L \star U(N N)) * W O R K 4(N N)$
CONTINUE
CALL DOXF (WORK2,WORK1,NX,DX) !
CALL DDXF (WORK3, WORK2,NX,DX) ADVECTION TERMS
CALL DDXF (WORK4, WORK $3, N X, D X)$ i
CALL XMEANF $(U, U, N X) \& \quad u$ and V NO LONGER NEEDED AT HALF CALL XMEANF $(V, V, N X)$ i POINTS BUT AT WHOLE POINTS.

CALL DDXX(FI, WORKA,NX,DX) I PRESSURE GRADIENT TERM
GEY R.H.S. OF EQUATIONS (18), (19), AND (20)
OO 200 NN:O,NXP!
RHSIV(NN) = - (RO*WOKKI (NN) + OIV (NN) +RB*V(NN))
RHS1O(NN) - (RO*WORK2(NN)-VORT(NN)+RB*U(NN)+WORK4(NN)
RHSIC(NN) $=-(R O \star W O R K S(N N)-H O * U O * V(N N)+R F \star D I V(N N))$ CONTINUE
STEP FORMARD FOR VORTICITY, DIVERGENCE AND GEOPOTENTIAL
TME ADAMS BASHFORTH SCHEME IS USEDI THE TIMESTEP IS FORWARO AND THE R.H.S: SIDES ARE ESTIMATED GY LINEAR EXTRAPOLATION FROM THE NTH AND (N-1)TH TIMELEVELS.
if you want to change the time-scheme do it here. DELT $=$ OT
FN $=1.5$
FNMI $=-0.5$
IF (NSTEP.GT,0) GO TO 250
FN $=1.0$
FNMI $=0.0$ \& FIRST STEP IS EULER FORWARD
CONTINUE:
ACTUAL FORWARO STEP, EQUATIONS (18),(19),(20)
DO 300 NN=O,NXP1
WORKI(NH) $=\operatorname{VORT}(N N)+D E L T$ - (FN*RHSIV(NN) +FNMI\#RHS2V(NN) WORK2(NN) = DIV(NN) + DELT - (FN*RHSID(NN)+FNMI*RHS2D(NN)) WORK3(NN) $=$ FI(NN) - DELT • (FN*RHSIC(NN) +FNMI*RHS2C(NN) CONTINUE

IF THE TIMESTEPPING SCHEME IS TWO-LEVEL WE ONLY NEED
TO KEEP THE MOST RECENT VALUES; IF IT IS A THREE-LEVEL
SCHEME (E,G. LEAPFROG OR AOAMS BASHFORTH) THEN SOME OLD VALUES WILL BE NEEDED. THE EMPHASIS IN THIS 1 -D MODEL IS ON SIMPLICITY OF CODING RATHER THAN ECONOMY OF CORE.
save the old values and relocate the updated ones
 CALL MEMOVE (FI ; FIOLD,O,NXPI)

CALL MEMOVE (WORK1,VORT,O,NXPI) !
CALL MEMOVE (WORK2,OIV 0 ,NXP1) ! MOVE IN NEW VALUES
CALL MEMOVE(WORK3,FI ,O,NXPI)
CALCULATE THE VELOCITIES AT THE NEW TIME
CALL POISID (CHI, DIV,NX,DX) ! VELOCITY POTENTIAL
CALL POISID(PSI,VORT,NX,DX) ! STREAM FUNCTION CALL DDXB(CHI,U,NX,DX) ! MONAL VELOCITY
CALL DDXB(PSI,V,NX,DX) ! MERIOIONAL VELOCITY
calculate the energetics
CALL ENERGY(NSTEP)
SHIF R.H.S TERMS FOR NEXT CYCLE
CALL MEMOVE (RHS IV,RHS2V,0,NXP1)
CALL MEMOVE(RHSIC,RHS2C, O,NXP1)
Save field values at a central point (for plotting)
NXH $=$ NX/2
PTU(NSTEP) $=U(N X H)$
PTV(NSTEP) $\equiv V(N X H)$
PTDIV(NSTEP) $=$ DIV (NXH)
PTVDRT(NSTEP) $=\operatorname{VORT}(N X H)$
SAVE VALUES FOR THE HOVMOELLER DIAGRAM OF FI. (F($\mathrm{NSTEP/NTHOV*NTHOV),EQ,NSTEP)} \mathrm{WRITE} \mathrm{(10)} \mathrm{FI}$

RETURN

END

SUBROUTINE ENERGY(NSTEP)
calculate the zonally averaged energies (see report, sec 4)
INCLUDE DYNAMO.COM-
$X K=S X V * * 2 * S X F I /(2, * G R A V$
$X A=S X F I * * 2 /(2 . * G R A V)$
$X N X=N X$
ROTKE $=0$.
DIVKE $=0$.
DVPE $=0$.
AVPE $=0$.
SOURC $=0$.
DO 100 NN=1,NX
ROTKE $=$ ROTKE $+(V(N N) * * 2) *(F I O+(F I(N N-1)+F I(N N)) / 2) \star \times K$
DIVKE $=$ DIVKE $+(U(N N) * * 2) *(F I 0+(F I(N N-1)+F I(N N)) / 2) * X K$
AVPE $=A V P E+(F I(N N) * * 2) * X A$
SOURC $=$ SOURC $+(V(N N) * 0.5 *(U(N N) * * 2+V(N N) * * 2) * S X V * * 3$,
$+(N N) *(F I(N N-1)+F I(N N)) / 2 * S X V * S X F I)$
$+\quad V(N N) *(F I(N N-1)+F I(N N)) / 2 \star S X V * S X F I)$
*FCOR*U0*SXV/GRAV
CONTINUE
EDDYKE = ROTKE+DIVKE
EDYTOT = EDDYKE AVPE
KEROT (NSTEP) $=(1 / X N X)$ *ROTKE $\quad!$ ROTATIONAL KINETIC ENERGY
KEDIV(NSTEP $=(1 / X N X) * D I V K E:$ DIVERGENT KINETIC ENERGY
KETOT (NSTEP) $=(1 / X N X)$ *EDDYKE
APE (NSTEP) $=(1 / X N X) * A V P E$
APLUSK (NSTEP) $=(1 / X N X) * E D Y T O T$
APLUSK (NSTEP) $=(1 / X N X)$ *EDYTOT ! AVAILABLE POTENTIAL ENERGY
SOURCE $(N S T E P)=(1 / X N X) * S O U R C \quad: \quad$ TOTAL EDDY ENERGY
SOURCE OF ENERGY
CALCULATE RATE OF CHANGE OF EDDY ENERGY GY FINITE DIFFERENCE IF(NSTEP.GT.O)

DDTAPK (NSTEP) $=($ APLUSK (NSTEP)-APLUSK (NSTEP-1))/(DT*SXT)
PRINT/TYPE THE ENERGIES AT EACH TIMESTEP: THEY GIVE A GOOD INDICATION OF NUMERICAL STABILITY OR INSTABILITY
INDICATION OF NUMERICAL STABILITY OR INSTAUILITY TYPE 99901, NSIEP, ROTKE, DIVKE, EDDYKE, AVPE, EDYTOT, SOURC FORMAT(* NSTEP: *,I4,' KR,KD,KT,AP,TE,SC *,IPGEI2.3)

RETUR

END
SUBROUTINE OUTPUT
PRINT OUT THE RESULTS OF THE RUN
InClUDE 'dYNamO.COM'
plot the final field values
PRIE(6.99991)
FORMAT (/, *********
FINAL FIELO VALUES
TF(IPRINT) CALL PLOTLN(X,U
IF (IPRINT) CALL PLOTLN(X,V
$\begin{array}{llll}\text { IF (IPRINT) CALL PLOTLN } X, V & 0, N X,-2, \ldots+2 \ldots, & V & \text { FI } \\ \text { IF (IPRINT) CALL PLOTLN } X, F I \quad, 0, N X,-2,+2, i\end{array}$
IF (IPRINT) CALL PLOTLN(X,VORT,0,NX, $0,0, \ldots$ VORTICITY \cdot)
IF (IPRINT) CALL PLOTLN(X,OIV ,O,NX, O., O.,'DIVERGENCE')

Plot the field values at the middle point WRITE(6,99992)
ORMAT(1: ********** POINT TENDENCIE
F(IPRINT) CALL PLOILN(T,PTU ONSTEPS OO OO ***********/) IF(IPRINT) CALL PLOTLN(T,PTV ,O,NSTEPS,00.,00.,'MIDPT U :)

IF (IPRINT) CALL PLOILN(T,PTFI 0, NSTEPS, $00,00, \ldots M I D P T$ FI IF (IPRINT) CALL PLOTLN(T,PTDIV, 0, NSTEPS,00.,00.,'MIDPT OIV ${ }^{\prime}$) IF (IPRINT) CALL PLOTLN(T,PTVORT,O,NSTEPS,00.,00., 'MIDPT VORT')
graph the evolution of the energy guantities RRITE(6,99993)
FORMAT (\% ********** ENERGY OUANTITIE
IF (IPRINT) CALL PLOTLN(T,KEROT,O,NSTEPS, 0., 1..' ROT KE "
F(IPRINT) CALL PLOTLN(T,KEDIV,0,NSTEPS, 0., 1..' DIV KE .
F(IPRINT) CALL PLOTLN(T,KETOT,0,NSTEPS, O., 1..' TOT KE .
IF (IPRINT) CALL PLOTLN(T, APE , O,NSYEPS, $0 ., 1,{ }^{\prime \prime}$ APE
IF (IPRINT) CALL PLOTLN(T,APLUSK,O,NSTEPS, O., 1..' APLUSK
F(IPRINT) CALL PLOTLN(T,
plot hovmoeller oiagram of geopotential
IF (IHOV) CALL HOVMOL
RETURN
END
SUBROUTINE POISID(PHI,RHO,N, DELTA)
SOLVE A POISSON EQUATION IN ONE DIMENSION
ITH PERIODIC BOUNDARY CONDITIONS
AP (PHI) = RHO
LAP (PHI) $=$ RHO
RREF: HOCKNEY, R,W, AND J, W, EASTWOOD
CREMPUTER SIMULATION HS J.W. EASTWOOD, $1981:$
MC GRAN-HILL INC., NEW YORK, 54OPP.1
REAL PHI(O:N),RHO(O:N)
assume the end values vanish (they are arbitrary).
PHI (O) $=0$:
calculate the first value
DELSO = DELTA**2
UM $=0.0$
UUM $=$ SLIM. + NN*RHO(NN)
ONTINUE
(SUM/N)*DELSO
0200 NNE OTHER VALUES
PHI(NN) $=$ RHO (NN-1)*OELSO+2,*PHI (NN-1)-PHI (NN-2) CONTINUE

CHECK R.H. END is APPROX ZERO (MEASURE OF ROUNDOFF)
YPE 99901, (NN,PHI(NN),NN=1,N
FORMAT(/ POIS10. (15,1PE12,3)
FILL IN END VALUES
RETURN
NO
IIL END VALUES OF A PERIODIC ARRAY
FILL END VA
REAL A $(O: N)$
$A(0)=A(N)$
$A(N+1)=A(1)$
RETURN
END

CALCULATION OF VARIOUS FINITE DIFFERENCE
(1) CENTRED FIRST DIFFERENCE

SUBROUTINE DDXBAR (F,DIFF,N,DELTA)
DIMENSION F(O:N), DIFF(O:N)
$0010 \mathrm{NN}=1, \mathrm{~N}$
DIFF $(N N)=(F(N N+1)-F(N N-1)) /(2, * U E L T A)$ CONTINUE
CALL ENDS(DIFF,N)
RETURN
(2) FORWARD FIRST OIFFERENCE

ENTRY DDXF(F,DIFF,N,DELTA)
DO 20 NN=1, N
$F(N N+1)-F(N N)) / D E L T A$
CONTINUE
CALL ENDSS(DIFF,N)
(3) BACKWARD FIRST OIFFERENCE

ENTRY DDXB(F,DIFF,N,DELTA)
DO $30 \mathrm{NN}=1, \mathrm{~N}$
DIFF(NN) $=(F(N N)-F(N N-1)) / D E L T A$
CONTINUE
CALL ENDS (DIFF,N)
RETURN
(4) CENTRED SECOND DIFFERENCE

ENTRY DDXX(F,DIFF,N,DELTA)
DO 40 NN $=1 . \mathrm{N}$
$0 \operatorname{OIFF}(N N)=(F(N N+1)+F(N N-1)-2, * F(N N)) /(D E L T A * * 2)$
CONTINUE
CALL ENDS(DIFF,N
RETURN
End
AVERAGING OPERATORS (FORWARD AND BACKWARD)
SUBROUTINE XMEANF (F,FBARX,N)
DIMENSION F $(O: N), F B A R X(O: N)$
DO 10 NN $=1$, N
$F B A R \times(N N)=(F(N N)+F(N N+1)) / 2.0$
CONTINUE
ALL ENDS (FBARX,N)
RETURN
ENTRY XMEANB(F,FBARX,N)
20 NNTN, $1=-1$
$F B A R X(N N)=(F(N N-1)+F(N N)) / 2.0$ CONTINUE
CALL ENDS (FBARX,N)
RETURN
END.
QUBROUTINE ENDS(A,N)
Ill eno values of a periodic array
$A(0)=A(N)$
RETURN
END

BUBROUTINE VECCON(C,A,8,11,12) MULTIPLY A REAL VECTOR A(II:I2) BY A CONSTANT C AND STORE IN MATRIX B.

REAL $A(I t: 12), B(11: 12)$
$00 \quad 10 \mathrm{~K}=11,12$
$B(K)=C \neq A(K)$
CONTINU
REND
subroutine memove (From, TO, NN,NX)
MOVE AN ARRAY IN CORE

REAL PROM(NN:NX

DO $100 \mathrm{~K}=\mathrm{NN}, \mathrm{NX}$
$100 \mathrm{TO}(\mathrm{K})=\mathrm{FROM}(K)$ RETUR
END

c
c
c
c
c
C
C
C
c

C*FIND maximum and minimum values of "y*
2YMAX $=P Y(X 1)$
ZYMIN $=\operatorname{PY}(x 1)$
DO 25 IEKI, X2
IF (PY(I).GT. ZYMAX) ZYMAX=PY(I) IF (PY(I) :LT, ZYMIN) ZYMIN=PY(I)

```
25
```

C C RANGES OF X and y - PRINT MESSAGE
IF ($(2 X M I N, N E, Z X M A X)$. AND. (ZYMIN, NE, ZYMAX)) GOTO 35
IF ($(2 X M I N, N E, Z X M A X)$. AND, (ZYMIN, NE, ZYMAX))
30 FORMAT(' REDUNDANT CALL TO $==$ PLOTLNE $={ }^{\circ}$
1 RANGE OF $x:!1 P E!2,3, E 12,31$ 2 RETURN

C\#SCALING FACTORS
35 CONTINUE
IF (PYMIN, EQ, PYMAX) GO TO 36 IF (PYMIN.LT. ZYMIN) ZYMIN=PYMIN
36 EXFAGT 100 (ZXMAX ZXMIN)
36 2XFACT $=40.0$ (ZYMAX 2 YMIN
$\mathrm{C}_{\mathrm{C} X} \mathrm{X}$ aXIS sCale
ZXAXES=(ZXMAX-ZXMIN)/10.0
DO 40 İ1,11
$40 \quad$ CONTINUE \quad FLOAT(I-1)*ZXAXES + ZXMIN

2YAXES $=(2$ YMAX-ZYMIN $) / 10,0$
DO $451=1,11$
ZYSCAL(IREV) =FLOAT(I-1)*ZYAXES + ZYMIN
45 CONTINUE

C*CLEAR THE GRAPHICAL AREA
DO 50 IYF2,42
$0050 \quad 1 X=2,102$
IGRAPH (IX,IY)=IBLANK
50 CONTINUE
C PRINT X-AXIS AT ZERO (IF POSSIBLE)
IF ((ZYMIN.GT.0.0),OR. (ZYMAX,LT. 0.0) GO T0 60 $Y Y=42.0-(0,0-Z Y M I N)=Z Y F A C T$
$I Y=Y Y+0.5$
F(IY.LTIYMIN) IYエIYMIN
IF (IY-GT, IYMAX) IY=IYMAX
S5 JX=2,102
55 CONTINUE \quad IY) IXLINE
c PRINT YOAX
60 CONTINUE
IF ($(Z X M I N, G T, 0,0)$, OR. (ZXMAX.LT, O.0 $)$ GO TO 70
$X X=(0.0-2 X M I N) * 2 X F A C T+2.0$
$x=x x+0.5$
F(IX.LT,IXMIN) IX=IXMIN
F(IXAT IXMAX) IX=IXMAX

```
        DO 65 JYF2,42
        IGRAPH (IX,JY)= IYLINE
    65
        CONTINUE
X axIS (TOP AND BOTTOM)
    70 CONTINUE
        00 75 1x=2,102
            GRAPH(IX, 2)=1XLINE
            IGRAPH(IX,42)=IXLINE
            CONTINUE
        DO 80 [ X =2,102,10
            IGRAPH(IX, 2)=IYLINE
            GRAPH(IX,42)=IYLINE
            CONTINUE
C
CONTINUE
        DO 90 IY=2,42,4
        IGRAPH( 2,IY)=IXLINE
        GRRAPH(102,IY)=IXLINE
    90 CONTINUE
```

SLOPE $=0.0$

TEST $=(x \times 2-\times \times 1)$ * $\left(\times \times 2-\times x_{1}\right)$
IF (TEST,GE.1.0E-6) SLOPE (YYZ-YY1) / (XX2-XX1)
IF (IX1.GT.IX2) GOTO 95
IMIN $=1 \times 1$
IMAX $=1 \times$
GOTO 100
IMIN $=1 \times 2$
$\operatorname{IMAX}=1 \times$
COHTINUE
$00105 \mathrm{JX}=$ IMIN, IMAX
$X_{X X}=j x=1$,
$Y Y=Y Y_{1}+$ SLOPE $*\left(X X-X X_{1}\right)$
JY E YY \quad IGRAPH (JX,JY),EQ.IBLANK) IGRAPH(JX,JY) $=100$ T CONTINUE
GOTO 130
110 CONTINUE SLOPE $=0.0$
TEST $=$ (YYZ-YY1) * (YYZ-YY1)
IF (TEST.GT.1,0E-6) SLOPEY (XX2-XX1) / (YYZ-YY1)
GT (Y2) GOTO 115
IMIN
IMAX
GOI IYI
IYZ
$\operatorname{IMAX}_{\text {GOTO }}=120$
115 IMIN =IY
IMAX $=$ IY
120
CONTINUE
00125 JY $=$ IMIN,IMAX
$Y Y=J Y$
$X X=X X 1$
$\begin{array}{l}X X=X X 1 \\ J X=X X\end{array}+$ SLOPE $\left.* Y Y=Y Y 1\right)$
$j x=x x$
IF(IGRAPH(JX,JY).EO, IBLANK) IGRAPH(JX,JY)=IDOT
125
C\#SAVE CURRENT POINT FOR PROCESSING NEXT TIME AROUND
130 CONTINUE
CONTINUE
IYOLDEIX
135 CONTINUE
${ }^{C}$
cmoutput the graph
OO 150 IYORT $=1,10$
IYI $=4 * I Y O R T-2$
IY2EIY1+1
$1 Y 3=1 Y 2+1$
$1 Y 4=1 Y 3+1$
1Y4天IY3+1
WRITE (ICHANL, 140) (ZYSCAL (IYORT), (IGRAPH (IX,IYI), IX=2,102)
FORMAT(10X,1PE10,2,3X,101(A1))
WRITE (ICHANL,145) (IGHAPH($1 X, 1 Y 2), I X=2,102)$
WRIYE (ICAM, 145) (IGRAPH(IX,IY4), $1 \times 2,2,102$)
145 FORMAT(23x,101(A1)
150 CONTINUE
WRITE(1)
CORMAT(CHANL,155)(ZXSCAL(I),I=1,11)
c^{1}

