ERIGENIA

FEB 181998
LIBRARY
Number 15
November 1997

Journal of the Illinois Native Plant Society

ERIGENIA

Number 15, November 1997

The Illinois Native Plant Society Journal

The Illinois Native Plant Society is dedicated to the preservation, conservation, and study of the native plants and vegetation of Illinois.

Erigenia is named for Erigenia bulbosa (Michx.) Nutt. (harbinger of spring), one of our earliest blooming woodland plants. The first issue was published in August 1982.

Copyright ${ }^{\otimes} 1997$ The Illinois Native Plant Society (ISSN 8755-2000)

Erigenia Staff

EDITOR: Gerould S. Wilhelm
Copy Editor: Barbara A. Johnson
Typesetting and Design: Linda A. Masters
Production: George D. Johnson

Cover Illustration

Original drawing by Mark Mohlenbrock of five examples of our Illinois flora: Camassia scilloides (Raf.) Cory, Carex pensylvanica Lam., Dodecatheon meadia L., Quercus macrocarpa Michx., and Tradescantia virginiana L.
It is dedicated to Mark's father, Dr. Robert H. Mohlenbrock, who has devoted his career to the study of our state's flora.

Executive Committee of the Society

President: Marty Vogt
President-Elect: Mark Basinger
Past President: Glen Kruse
Treasurer: Jon Duerr
Recording Secretary: Ray Boehmer Membership: Lorna Konsis Editor, Erigenia: Gerould Wilhelm 324 N. York Road, Elmhurst, IL 60126
Editor, The Harbinger: Ken Konsis 20301 E. 900 North Road, Westville, IL 61883
E-MALL: ilinps@aol.com
Members-at-LARGE:
Todd Bittner, George Johnson, Mike Mason, Pat Neighbors, Jack Shouba

Chapter Presidents

Central (Springfield): Mike Mason East-Central (Urbana): Ken Robertson Forest Glen (Westville): Reggie Romine NORTHEAST (Naperville): George Johnson Southern (Carbondale): Mark Basinger

Membership

Yearly membership includes a subscription to
Erigenia and the quarterly newsletter, The
Harbinger. For more information write to:
Illinois Native Plant Society
Forest Glen Preserve
20301 E. 900 North Road
Westville, Illinois 61883

ERIGENIA

Number 15, November 1997

Table of Contents

Floristic Quality Assessment for Vegetation in Illinois, A Method for Assessing Vegetation Integrity
John B. Taft, Gerould S. Wilhelm, Douglas M. Ladd, and Linda A. Masters 3
Abstract 3
Introduction 3
Background on Assessment Methods for Natural Areas 4
Principles of Plant Community Ecology Relevant to Floristic Quality Assessment 5
Methods 6
Terminology and Concepts 7
Coefficient of Conservatism 7
Ecological and Community Integrity 9
Floristic Quality Index 9
Natural Area 10
Physiognomy 10
Application of Floristic Quality Assessment 10
Floristic Quality Assessment Application Computer Program 10
Survey Intensity and Spatial and Temporal Scales of Survey Units 11
Data Analysis 11
Results and Discussion 11
Examples of Floristic Quality Assessment 13
Example 1: Four Herbaceous Communities 13
Example 2: Two Mesic Upland Forest Communities 15
Example 3: Two Southern Flatwoods Communities 15
Testable Paradigm 17
Conclusions 18
Glossary 19
Acknowledgments 20
About the Authors 20
Literature Cited 21
Appendix: Vegetation of Illinois Database 24

Floristic Quality Assessment for Vegetation in Illinois A Method for Assessing Vegetation Integrity

John B. Taft ${ }^{1}$, Gerould S. Wilhelm ${ }^{2}$, Douglas M. Ladd ${ }^{3}$, and Linda A. Masters ${ }^{2}$

Abstract

Floristic Quality Assessment (FQA) is proposed as a method to assess floristic integrity in Illinois. For the application of FQA, each taxon in the Illinois vascular flora was assigned an integer from 0 to 10 termed a coefficient of conservatism (C). Two basic ecological tenets that the coefficients represent are that plant species differ in their tolerance to disturbance and disturbance types, and that plant species display varying degrees of fidelity to habitat integrity.

With these principles as a guide, the coefficient applied to each taxon represents a rank based on observed behavior and patterns of occurrence in Illinois plant communities and our confidence that a taxon is remnant (natural area) dependent. Species given a C value of $0-1$ are taxa adapted to severe disturbances, particularly anthropogenic disturbances, occurring so frequently that often only brief periods are available for growth and reproduction. Species ranked with a C value of 2-3 are associated with somewhat more stable, though degraded, environments. Those species with coefficients 4-6 include many dominant or matrix species for several habitats; they have a high consistency of occurrence within given community types. Species with C values $7-8$ are taxa we associate mostly with natural areas, but that can be found persisting where the habitat has been degraded somewhat. Those species with coefficients 9-10 are considered to be restricted to high-quality natural areas.

A floristic quality index (FQ1) and a mean coefficient of conservatism (\bar{Z}) are two of the values derived from floristic inventory data. Other derived parameters include species richness, relative importance, percent of taxa that are native and adventive, number of rare species, and guild diversity (including wetness and conservatism ranks, and physiognomic classes). We suggest that FQA is a promising tool that can be used to discriminate natural quality of vegetation on the Illinois landscape and to make time-series comparisons in ecological studies. We suggest the use of certain parametric and nonparametric statistical tests, such as analysis of variance, mean-separation techniques, and goodness-of-fit tests, that can aid in distinguishing nonrandom differences in floristic quality.

Introduction

Patterns of vegetation are reliable indicators of several biotic and abiotic factors. Biotic interactions among species and abiotic factors (including edaphic and climatic characteristics) influence plant assemblages in many complex ways that lead to the expression of differences at the species, community, and ecosystem levels. Overlying these influences is disturbance history. Disturbances differ in frequency, intensity, and duration. Infrequent disturbances of low intensity and short duration can have relatively negligible impacts on the integrity of a plant community. However, as frequency, intensity, and/or duration increase, damage and ultimately degradation can occur, resulting in predictable changes in plant community characteristics, particularly composition. Differentiating vegetation on the basis of level of degradation is an important step in attempting to conserve biodiversity. For example, preserve selection
and design (size and shape) of areas often are influenced by qualitative differences in vegetation. This paper describes a method for discerning floristic integrity in Illinois.

Floristic Quality Assessment (FQA) is a method that uses a floristic quality index (FQ1), introduced by Wilhelm (1977) and Swink and Wilhelm (1979, 1994), and modified here for the Illinois vascular flora. FQA integrates FQI with other vegetation parameters. These include mean coefficient of conservatism, species richness, percent native and adventive species, guild diversity for various physiognomic and conservatism classes, number of threatened and endangered species, and type of natural community and grades following the classification and grading criteria established by the Illinois Natural Areas Inventory (White 1978). FQA can be used to make spatial as well as time-series comparisons, and in this way FQA can be effective in tracking vegetational changes in restoration,

[^0]reconstruction, or control situations, and in evaluating parameters across environmental and disturbance gradients. Species abundance measures also can be included in FQA evaluations. In this paper we discuss key terminology, describe the method of FQA for the Illinois vascular flora, offer suggested applications and statistical analyses, and urge experimental tests of hypotheses related to floristic quality. We caution that any vegetative assessment based on a single index is likely to be insufficient to account for all possible relevant aspects. As an introduction, a short history of habitat assessment methods, particularly those used in Illinois, is given. Selected issues in plant-community ecology are included as background information.

Background on Assessment Methods for Natural Areas

Methods for making qualitative assessments of biological communities have had expanding roles in the conservation of lands and habitats as development pressures increase. An Index of Biological Integrity has been developed based on characteristics of fish community composition (Karr et al. 1986) and for ant populations (Majer and Beeston 1996). Migratory bird species have been ranked according to perceived prioritization of habitat and species conservation goals (Hunter et al. 1993). There is a recognized need for simple, sensitive, readily interpretable, and ecologically meaningful methods of classifying vegetation according to levels of ecological integrity (Keddy et al. 1993), particularly for use by the nonspecialist (Grime 1974). In addition, a rapid method of assessment often is needed, particularly when evaluating large portions of a landscape (e.g., proposed highway-construction corridors that cross numerous remnants of native vegetation and natural community types). Ordination techniques can be used effectively to examine relationships among vegetation (and abiotic) sample data. However, these indirect measures are not particularly rapid and are valueneutral, limiting their application for making qualitative assessments of biotic communities, particularly in the heterogeneous landscape.

Two developments have been key in the identification and protection of natural areas in Illinois. First, in 1963, the Illinois Nature Preserves Commission was formed to administer the development of a system of nature preserves as representative examples of the natural history of the state. Second, during the mid 1970s, the

Illinois Natural Areas Inventory (INAI) was an effort to conduct a comprehensive county-by-county inventory of natural areas (White 1978). A method for assessing habitat qualities was developed for the INAI, to aid in the identification of significant remnants of natural communities. Several site characteristics were integrated in the natural community grading method, including aspects of vegetation such as perceived successional stage, evidence of disturbance, and presence and relativeabundance patterns for species characteristic of particular habitats and levels of disturbance. The INAI used a discontinuous, determinant grading scale, where habitat remnants received a grade of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or E (defined under Illinois Natural Areas Inventory Grades in the glossary) in accordance with increasing degrees of disturbance reflected in the community characteristics (White 1978). Herein, reference to INAI natural areas will be made with capital letters (Natural Area).

Independent of the INAI was the development of a method of natural area identification using a continuous, indeterminate scale called a Natural Area Rating Index (NARI) based on floristic composition (Wilhelm 1977, Swink and Wilhelm 1979, Wilhelm and Ladd 1988). The NARI was developed as an aid in discriminating natural quality of vegetation among open lands in the Chicago region and is based on an index derived from the composition of vascular plants at a site. Because vegetation spans the entire disturbance gradient from an urban lot or cropland to relatively "pristine" habitats, a continuous scale offers some refinement to qualitative distinctions of floristic characteristics. This characteristic in particular made the Natural Area Rating Index a valuable tool for identifying degraded remnants of native vegetation having recovery potential, given appropriate management.

Principal criticisms of the method have included the following: 1) the coefficient range chosen, which began with -3 for the most invasive adventive species and increased by intervals of 1 to a coefficient of 10 (coefficients of 15 and 20 were used for very rare species), 2) a lack of consideration for species abundance, and 3) the subjective nature of coefficients assigned to each taxon and differences in interpretation of them. Refinements of the method led to a revised scale of coefficients that ranged from 0 to 10 ; all adventive species were assigned an asterisk with a numerical value of 0 . For clarity the method was renamed Floristic Quality Assessment (Swink and Wilhelm 1994).

Abundance measures for species, as described later in this paper, are readily accommodated in FQA and should be included in any assessment of vegetation when possible. It is important to acknowledge that natural quality assessments are subject to bias and require more or less subjective judgements at the current state of community ecological science (Crovello 1970). The FQA method, though subjective, permits dispassionate and repeatable application because its value judgements are predetermined. Assessment methods based on FQA have been developed in Ohio (Andreas and Lichvar 1995), Michigan (Herman et al. 1996), Missouri (Ladd 1993), and southern Ontario (Oldham et al. 1995), and elaborated on by Masters (1997).

In addition to investigating the current composition and structure of the vegetation, any assessment of vegetation quality should also give attention to degradation factors at the landscape, ecosystem, and community levels, and the historic (presettlement) and contemporary natural disturbance regimes.

Principles of Plant Community Ecology Relative to Floristic Quality Assessment

Plants can be classified into groupings based on a variety of species characteristics such as physiognomy, phenology, and ecophysiology, and habitat characteristics such as soil type, light, moisture, and disturbance regimes. In heavily developed landscapes such as Illinois, and similarly in Great Britain, contemporary anthropogenic disturbances to vegetation are often the predominant influences on composition (Hodgson 1986), and thus are dominant among assembly and response rules for communities (sensu Keddy 1992). Species sort selectively into this disturbance matrix; the opportunistic species become more common as the landscape becomes more unstable. The coefficients of conservatism used in FQA are an attempt to categorize species according to their response to levels of habitat degradation.

Three general topics in plant community ecology-disturbance ecology, the maintenance of diversity, and successional theory-are particularly relevant to the concept of floristic quality because they provide a framework for understanding patterns and trends, particularly at the population and community levels. Disturbance is a general term referring to any perturbation. Plant communities can be damaged when severely disturbed and are degraded when recovery to its
native biological diversity (original condition) is unlikely under normal circumstances. Degraded lands have lost some aspects of ecosystem structure such as species composition. Degraded lands are termed derelict when land use becomes very limited (Brown and Lugo 1994). They can be further distinguished as those that can be restored to nearly original condition through some management effort, rehabilitated to a condition somewhat similar to the original but where compositional differences remain (Lovejoy 1975) or, at best, reclaimed to a limited degree in severe cases such as strip mining.

Many midwestern plant communities were formed and historically maintained with landscape-scale processes that include disturbances such as periodic fire, as well as grazing or browsing impacts by large herbivores (Anderson 1983, 1990). Additional considerations in regard to disturbance regimes are addressed under Ecological Integrity in the methods section and in the discussion of succession below.

Different survival strategies have evolved among organisms for coping with disturbances. Among the hypotheses of mechanisms to account for these strategies are MacArthur and Wilson's (1967) r- and K-selected species, Grubb's (1977) regeneration niche, and Grime's regenerative flexibility for ecological amplitude (Grime 1974, Grime et al. 1988). For the latter, species survival strategies are considered to be shaped by an equilibrium among the ecological forces of competition, stress, and disturbance. These forces serve as axes for ordinating species' responses in Grime's "triangles." These ordinations yield three general life strategies referred to as the C-S-R model: competitors, stress tolerators, and ruderals.

Whittaker (1965) recognized that plant communities could be described by three basic dominance-diversity curves that differ in the cumulative proportion of importance of species. Species-poor communities are strongly dominated by a few taxa; in communities with high species richness, no species is strongly dominant. Many communities are intermediate, composed of a few taxa with high relative abundance and many intermediate and rare species. Several studies suggest that intermediate levels of available resources (nutrients and physical factors) support the greatest diversity (Tilman 1986, Ashton 1989, Tilman and Pacala 1993). Intermediate levels of disturbance also appear important in the maintenance of diversity in many communities (Connell 1978, Tester 1989), although the maintenance of peak
levels of plant species diversity in some particularly firedependent systems appears to require frequent perturbations (Walker and Peet 1983).

The groupings described above are useful in that they attempt to provide both order to species assemblages and predictability regarding the rate and direction of changes in response to such things as humaninfluenced disruptions. In all of the models, spatial and temporal heterogeneity within and among habitats is a critical factor in the maintenance of species diversity at the community level of organization or higher.

Succession is a frequently used term for the description of vegetational change through time. Clements (1936) argued that succession was an orderly and predictable process leading to a "climax" community, depending on climate and other factors. Typically, primary succession is initiated on exposed parent materials, while secondary succession involves changes in vegetational characteristics following events such as abandonment of cropland, clear-cutting of forests, or drainage of wetlands. However, climax is an ambiguous term (Crawley 1986) and appears to have little practical meaning if considered without regard to regional disturbance regimes or historical antecedents. In landscapes such as those in the Midwest, the development of many native plant communities was dependent on anthropogenic fires, the practice of which dates back to the postglacial era. In such circumstances the cessation of fire could be regarded as a "disturbance."

Indiscriminate use of the term succession may obfuscate the fact that certain plant communities require periodic perturbations such as fire for the maintenance of structural characteristics and compositional diversity. If unidirectional successional trends in these communities were among our conservation goals, we would not be concerned with vegetational changes such as those from prairie communities to forest-like assemblages or from biodiverse oak-dominated woodlands to mapledominated forest. Such changes, however, often result in a loss of species richness (Wilhelm 1991, Taft et al. 1995), particularly in our highly fragmented landscape, where species immigration, needed to compensate for local extirpations of species, is seriously challenged.

The term succession, when used for changes in vegetation following severe anthropogenic disturbances, may be misleading. Without detailed experimental studies of various disturbance factors on different vegetation types, we do not know how extensively vegetation "succeeds" or recovers to a more stable
condition. Without knowledge of the immigration potential for replacement species, we have no way to predict accurately the composition or structure of subsequent communities. Consequently, the assumptions of directional trends in secondary succession leading toward the original (presettlement) plant community may have lost relevance where the landscape is highly fragmented. Using terminology from disturbance ecology (e.g., degraded, derelict) when describing the natural condition of a site may be clearer than speculations about successional phases (e.g., early successional, late successional) of disturbed vegetation. Apparently, many degraded sites persist in states of perpetual botanical purgatory (Taft 1996).

METHODS

In Floristic Quality Assessment (FQA), floristic inventory data are used to calculate several parameters of vegetation. These include the following measures, each defined and described in greater detail in subsequent sections: 1) species richness, 2) floristic quality index (FQ1), 3) mean coefficient of conservatism ($\overline{\mathrm{C}}$), 4) guild diversity (frequency distribution among physiognomic and conservatism classes), 5) species relative importance, 6) number and percent rare and adventive species, and 7) wetness characteristics. These data are presented in a summary table. The FQI and $\overline{\mathrm{C}}$ are derived from coefficients of conservatism assigned to each taxon in the Illinois vascular flora. Important terms related to FQA are defined in the glossary; key concepts and terminology underlying the general philosophy of FQA are discussed below. Recommendations for applying and analyzing selected FQA results are included. We undertake this effort with the knowledge that contending with the entire flora of Illinois overextends our collective experience to some extent. The judgments presented here are based primarily on our cumulative total of over 60 years of botanical and ecological field study throughout Illinois and the Midwest.

Botanical nomenclature in the text and appendix approximates Mohlenbrock (1986). Many hybrids and certain subspecific taxa such as forma are not included; some varieties were omitted when we perceived them not to vary ecologically from the typical variety. Recently recorded species for Illinois are also included. The listing of species in Appendix I is not to be interpreted as a definitive flora of Illinois; it is intended
solely to be reference database for applications of Floristic Quality Assessment.

The list in Appendix I comprises 2,091 native taxa and 955 non-native taxa, for a total of 3,046 taxa, compared with Mohlenbrock's (1986) total of 3,203 taxa, which included 101 hybrids. It is beyond the scope of this paper to list currently accepted nomenclatural synonomy for each taxon; such a list soon would be out of date. Unfortunately, scientific names of plants in North America are in a state of flux, with often conflicting nomenclatural treatments (Little 1979, Kartesz and Kartesz 1980, Soil Conservation Service 1982, Gunn et al. 1992, Morin 1993, and Kartesz 1994). Only a single common name for each taxon is offered, despite the fact that many taxa are known by a variety of colloquial names. An attempt was made to use common names with the widest appeal; they are taken mostly from Mohlenbrock (1986), Swink and Wilhelm (1994), and Robertson (1994).

Physiognomic designations are subject to interpretation. Terms such as annual, biennial, perennial, shrub, and tree sometimes imperfectly depict the habit of plants, but for the purposes of guild formation in FQA analysis, such designations can be useful in describing structural differences or changes.

Terminology and Concepts

Coefficient of Conservatism. For the application of FQA, each taxon in the Illinois vascular flora was assigned an integer from 0 to 10 , termed a coefficient of conservatism (C). The coefficients represent two basic ecological tenets: plants differ in their tolerance to disturbance type, frequency, and amplitude, and plants display varying degrees of fidelity to habitat integrity. With these principles as a guide, the C value applied to each taxon represents a relative rank based on observed behavior and patterns of occurrence in Illinois plant communities and our confidence that a taxon is remnant (natural area) dependent. The authors reached consensus on these coefficients through committee effort and, in some cases, with consultation from reviewers of the manuscript. For certain taxa we supplemented our field experience by examining range maps (Mohlenbrock and Ladd 1978) and reviewing comments regarding habitats in several floras (Deam 1940, Gleason 1952, Steyermark 1963, Sheviak 1974, Mohlenbrock 1986, Swink and Wilhelm 1994). The native species most successful in badly damaged habitats were given C values of 0 . At the
other end of the spectrum, species virtually restricted to natural areas in Illinois received C values of 10 . All 957 non-native species were assigned asterisks $(*)$ and are treated as O in the calculations for site indices (FQI and $\bar{C})$. These calculations are further discussed in comments under Floristic Quality Index below and in the glossary. Species native to Illinois, but also occurring escaped from cultivation (e.g., Pinus spp.), should be ranked as nonnative species when found in such situations.

With these criteria for designating coefficients, our approach was somewhat different from past efforts. For example, we are not intending to estimate the degree to which a species is restricted to a certain habitat, or to gauge its modality according to Curtis (1959). Many relatively conservative taxa (e.g., Amorpha canescens, Baptisia leucophaea, Cypripedium candidum, Drosera rotundifolia, Gaylussacia baccata, Osmunda cinnamomea, Ceanothus americanus, and Viola pedata) occur regularly in more than one plant community, as defined by White and Madany (1978). In addition, we were not attempting to estimate rarity, although some circularity of reasoning was unavoidable when evaluating very rare taxa known only from a few natural areas.

Reasons for rarity in the Illinois flora are many (Taft 1995) and include several recognized by Rabinowitz (1981). Scale of inference influences what is considered a rare species. Many species that are rare within the political boundaries of Illinois are abundant elsewhere. Many conservative taxa are not at risk of extirpation from the state, but are regionally quite rare because of habitat loss and degradation. Commonness and rarity of plant species in England have been considered in terms of ecological, taxonomic, and evolutionary processes within a landscape characterized by tremendous habitat loss and degradation (Hodgson 1986). Although common and rare species at local scales may be strongly correlated to measurable traits, there is so much variability in ecological, taxonomic, and evolutionary characteristics of species at the statewide scale (Schwartz 1993) that these groupings do not address consistently our criteria for conservatism. Although rarity is not a criterion for assignment of C values, it forms a part of the matrix of parameters in FQA.

The coefficients, in part, can be considered in terms of Grime's (1974) survival strategies. Species given a C value of $0-1$ correspond to Grime's ruderal species and those with a C value of $2-3$ correspond to ruderalcompetitive species. This broad, combined species guild includes taxa adapted to frequent and severe disturbances,
including anthropogenic disturbances that often result in only brief opportunities for reproduction. Under such a disturbance regime, only species capable of maintaining populations under such conditions are present, including those that rapidly grow, flower, and produce fruits (e.g., Ambrosia trifida, Amarantbus rudis, Cassia fasciculata, Conyza canadensis, Erigeron annuus, Impatiens capensis, Lactuca canadensis, Lepidium virginicum, Oxalis stricta, Parietaria pensylvanica, and Vulpia octoflora). Many are capable of persisting in seed banks, and some have winddispersed seeds-two strategies that allow species to sort into suitable, newly disturbed habitats. Some longer-lived species capable of persisting with frequent disturbances such as siltation, flooding, and grazing are also included in this group (e.g., Acer saccharinum, Crataegus pruinosa, Gleditsia triacanthos, Populus deltoides, Ribes missouriense, Rubus occidentalis, and Symphoricarpos orbiculatus). These taxa constitute approximately 17% of our native flora. In conjunction with many of the adventive elements, these species now dominate the contemporary Illinois landscape.

Species assigned coefficients 4-6 correspond roughly to Grime's competitors. These include many dominant or matrix species for several habitats (e.g., Andropogon gerardii, Carex artitecta, C. pensylvanica, C. stricta, Carya ovata, Panicum virgatum, Quercus alba, Schizachyrium scoparium, and Sorghastrum nutans) and species that are often expected, or have high consistency, in a given community type (e.g., Aesculus glabra, Arisaema triphyllum, Delphinium tricorne, Pblox divaricata, Silphium integrifolium, Smilacina racemosa, Thalictrum dioicum, Trillium recurvatum, and Zizia aurea). Many can persist with light to moderate disturbances for intermediate periods, but may decline with an increase in intensity, frequency, or duration of disturbance. Some species that are range restricted, such as Boltonia decurrens, which is listed as a threatened species by the U.S. Fish and Wildlife Service (USFWS 1988) and the Illinois Endangered Species Protection Board (Herkert 1991), and other species that are rare in Illinois such as Scirpuspaludosus, and Tradescantia bracteata, are included in the 4-6 category. In the contemporary Illinois landscape these species demonstrate considerable tolerance to disturbance and even habitat degradation, but usually not to the extent characteristic of the ruderalcompetitor species guild.

Onoccasion, during the coefficient assessment phase of this project, we needed to evaluate taxa that demonstrate regional behavioral differences in Illinois,
such as Asclepias tuberosa and Oxalis violacea. These species are occasional to common in degraded habitats in far southern Illinois, but in central and northern Illinois they are more restricted to remnant areas. In these instances, we assigned an intermediate value such as 5 .

The species having C values of $7-10$ are less clearly aligned with Grime's model. Grime et al. (1988) defined the third guild, stress tolerators, to include species that persist where plant productivity is continuously limited by the environment. A more specific definition of Grime's stress tolerators, offered in an editorial by Duffey (1986), includes "species that are slow-growing, long-lived and often rather immobile plants of infertile habitats or late-successional vegetation." Our criteria for species ranked with coefficients $7-10$ allow the inclusion of species that may tolerate stress, but through a variety of mechanisms. More germane to qualitative floristic assessments, these taxa do not tolerate much habitat degradation. Consequently, this guild includes some annuals and biennials (e.g., Agalinis gattingeri, Draba cuneifolia, Hottonia inflata, Iresine rbizomatosa, Lechea intermedia, Oenothera linifolia, Polygala incarnata, and Utricularia minor). However, like Grime's stress tolerators, most taxa in this guild are long-lived perennials (e.g., Asclepias meadii, A. viridiflora, Carex disperma, C. pedunculata, C. prasina, Clitoria mariana, Cystopteris bulbifera, Gymnocarpium dryopteris, Lilium philadelphicum, Mentzelia oligosperma, Sedum telephioides, S. ternatum, and Talinum parviflorum, Woodsia ilvensis). The species ranked with coefficients 7-8 include taxa we associate mostly with natural areas but which can be found persisting where the habitat has been degraded somewhat (e.g., Actaea pachypoda, Caulophyllum thalictroides, Ceanothus americanus, Lysimachia quadriflora, Peltandra virginica, Pblox pilosa, Spigelia marilandica, and Viburnum rufidulum). Like the matrix species (C values of 4-6), if the disturbance resulting in degradation increases in frequency, intensity, or duration, these taxa are expected to undergo reduction in population sizes and eventually be prone to local extirpation. Species with coefficients $9-10$ are considered to be restricted to relatively intact natural areas.

Though there is some commonality between the C-S-R model (Grime et al. 1988) and the concept of conservatism, we lack the experimental autecological evidence to ordinate species into Grime's triangles. Further, species assigned C values of $7-10$ do not fit consistently into Grime's C-S-R model, unless the stresstolerator guild is more broadly defined to include species
found primarily in semistable habitat remnants (sometimes referred to as "late-successional" communities).

Unfortunately, taxa included among each major cohort of coefficients ($0-3,4-6,7-10$) span a range that is too broad taxonomically, ecologically, and physiognomically for any objective natural sorting to serve as a guide to species rankings that meet our guiding principles for the coefficients of conservatism (see above). For that reason, we based our judgments for the assignments of the coefficients on the observed behavior of individual elements of the flora within the context of their Illinois ranges. Applying our judgments was necessary since it is likely we will never have sufficient experimental data to make predictions about floristic quality and ecological integrity for the diversity of habitats, species, and disturbance regimes in Illinois using more ostensibly "objective" methods. Furthermore, rapid and repeatable techniques for evaluating the integrity of plant communities are needed now, particularly when assessing complex patterns of vegetation in large sections of the landscape.
Ecological and Community Integrity. There are both functional and structural aspects of ecosystems. Ecosystem function involves the flow of energy and matter, while structure is characterized by biotic interactions, composition, and form. Ecological or community integrity can be viewed as the degree to which self-correcting properties are exhibited when an ecosystem is exposed to disturbance (Regier 1993). Natural disturbances are perturbations that occur routinely in a system and to which the component taxa have tolerance or adaptations. They can occur at many different scales. Tree falls and gopher mounds are examples of small-scale perturbations. Fire is an example of a large-scale natural disturbance in many Midwestern plant communities, and fire frequency and timing are important determining factors for many community characteristics. Fire absence can result in dramatic changes in community structural characteristics (Taft 1997). Perturbations that exceed the intensity, frequency, or duration of the natural disturbance regime can result in loss of species that lack tolerance or adaptations to the new levels. When certain species, or assemblages of taxa, are extirpated from a community, the system's capability for restoration is diminished, and integrity is lowered.

Integrity can be lowered not only by the loss of species and the diminishment of abiotic processes and
certain aboriginal practices, but also from the invasion of adventive taxa. Adventive taxa in a system may sort into disturbance or habitat niches, replace many native taxa over time, and interfere with rates of recovery processes (Cohen et al. 1995).

Measuring ecological integrity based on ecosystem function alone may not provide the resolution needed to detect important changes. For example, biomass and productivity may not change dramatically in a palustrine wetland impacted by siltation or altered flooding regimes where only a few tolerant taxa persist (e.g., Typha spp. and Phalaris arundinacea). However, the structural integrity of a formerly diverse graminoid wetland is lost in this near monoculture, as when, for example, a discharge wetland is converted to a surface runoff wetland as a result of ambient watershed alterations. Integrity of both ecosystem structure and function is reduced in a heavily grazed (or browsed) woodland when soil compaction and intense herbivory result in losses in moisture, nutrient availability, biomass, and diversity, as well as changes in species composition. Floristic Quality Assessment addresses the structural aspects of ecosystem integrity.
Floristic Quality Index. The FQI is a weighted index of species richness (N), and is the arithmetic product of the average coefficient of conservatism ($\overline{\mathrm{C}}$) and the squareroot of species richness (\sqrt{N}) of an inventory unit. The square-root transformation of N limits the variable influence of area alone on species richness (Swink and Wilhelm 1979, 1994). In practice, it is possible for two sites with the same $\overline{\mathrm{C}}$ to have different FQIs, and it is possible for two sites with the same FQI to have different $\overline{\mathrm{C}}$ values. Relatively degraded sites can have an FQI similar to or greater than high-quality natural areas if they support a much greater native species richness. This can occur when there are substantial differences in size, levels of habitat heterogeneity, or inventory effort among compared sites. This and other relationships among the $\mathrm{FQI}, \overline{\mathrm{C}}$, and N are illustrated in figure 1. Thus, rather than relying on a single index to describe floristic integrity, it is usually necessary to include more than one parameter of the composition to estimate more precisely site floristic integrity.

For the floristic parameters FQI, $\overline{\mathrm{C}}$, and N , we recommend that calculations be made using all species (native and adventive) as well as native species only. As noted previously, the establishment of exotic species in a natural community often can result in the replacement

FIGURE 1. Baseline model comparing floristic quality index (FQI) and mean coefficients of conservatism (C) from two sites with differing total species richness. Site A has N (species richness) $=x$, and Site B has $\mathrm{N}=\mathrm{x}+\mathrm{n}$. The examples illustrate where two sites with different total species richness but similar mean coefficient of conservatism $\left(\mathrm{C}_{1}\right)$ will differ in floristic qualty indices (FQI_{1} and FQI_{2}), and where two sites with similar floristic quality indices $\left(\mathrm{FQI}_{3}\right)$ will differ in mean C values $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$.
of native species and interfere with recovery processes. Differences in these values among sites provide measures for the erosion of floristic integrity (Swink and Wilhelm 1994).

Natural Area. A gradient of natural quality exists from the most pristine habitat that largely has escaped postsettlement anthropogenic damage to cropland or pavement. The determination of where along that gradient is the demarcation of "natural area" is a matter of judgment and is goal dependent. The Illinois Natural Areas Inventory (INAI) had the very specific goal of identifying all remnants of natural communities that were viewed as significant statewide for their existing quality. It was not intended to be a comprehensive inventory of all the remnant natural communities worthy of preservation or restoration activities. The results of the INAI revealed that a mere 0.07% of the land area of Illinois remains in a high-quality, undegraded, natural condition (White 1978). These Natural Areas tend to be isolated remnants scattered across the state with concentrations in northeastern and far southern Illinois, as well as along its western border by the Mississippi River. Many more areas persist that retain exceptional or noteworthy natural features, but that fall somewhere between INAI eligibility and
recently fallowed land. For this paper we are broadly considering a natural area to be a natural community that is judged to be representative of presettlement vegetation for the site. This general definition includes all Natural Areas; it also includes areas that presently do not meet the standards for the INAI but that, with management and time, probably could be restored to a community with floristic composition, structure, and diversity similar to presettlement condition.
Physiognomy. Tracking physiognomic classes, particularly in time-series comparisons, can be an important component of FQA, since it is theoretically possible for dramatic changes in community structure to occur without changes in the FQI or $\overline{\mathrm{C}}$. The physiognomic classes included for each taxon in the appendix are listed under Physiognomy in the glossary.

Application of Floristic Quality Assessment

FQA summarizes floristic data from an inventory unit, or units, including species diversity (e.g., species richness and FQ1), mean coefficient of conservatism, number and percent rare and adventive species, relative importance of species, and guild diversity (for physiognomic groups, wetness ranks, and conservatism ranks). All of these parameters can be calculated readily. However, if assessments are made on numerous areas, an automated program (Masters, in preparation) can reduce assessment time. In addition, it produces summary tables of these parameters and generates a list of species along with a common name, conservatism and wetness value, and physiognomic class for each taxon. The INAI grade and community type can be included in a summary of a floristic assessment unit. Species abundance measures taken from an inventory unit (e.g., relative abundance estimates, importance values) also can be entered for each taxon.
Floristic Quality Assessment Program. Most of the parameters in FQA for assessment units can be calculated using the computer program (Masters, in preparation) mentioned above, which is designed to summarize these vegetational traits from floristic data. By entering plant names or a six-letter acronym, the FQA program provides information for a floristic inventory and analysis unit. Both an overall site inventory method and sampling methods are available in the program. For the inventory program, indices and means are calculated for the entire inventory unit. For the sampling option, data from quadrats (which may be random, stratified random,
or systematic and may or may not be permanent) are used. This latter option is useful in tracking spatial and temporal gradients of floristic integrity and wetness (see Wilhelm 1992), comparing data from large inventory units, and conducting rapid ecological assessments (Heumann et al. 1993).

Survey Intensity and Spatial and Temporal Scales of Survey Units

Measurements of an ecosystem or community usually are at a smaller scale than the target system. Since the FQI is a weighted index of species richness, larger survey units and greater inventory efforts generally yield higher indices of floristic quality (figure 1), if increased size corresponds to increased richness of conservative species. Determining the extent and configuration of the survey unit often is not a trivial question. Where the unit of floristic analysis is an isolated habitat fragment, the sample area usually is readily apparent. In landscapes with more contiguous vegetation, however, determining the sample unit is less obvious and in many ways dependent on the questions and interests of the investigation. Goals of the analysis may include a complete species inventory, but it should be noted that a complete inventory usually is not possible because of spatial and especially temporal variability in floristic composition. Thus, a single site visit will not comprehensively account for all species in a community or site. With repeated visits over the growing season most species that are actively growing at a site can be identified, but this would not be adequate to evaluate the seed bank. Experience in midwestern vegetation types has demonstrated that a single visit made between early June and late August by a competent botanist can achieve a roughly 80% complete inventory. Subsampling, spatially and temporally, is a practical option, particularly where habitat integrity appears relatively uniform and the survey unit is too large to inventory completely within the time available. Details of the survey method and effort always should accompany any reporting of results from FQA. Indiscriminate comparisons of floristic quality can be misleading if the methods used for the evaluations are not similar. Where area and heterogeneity of habitats or community remnants are considerably different, the mean coefficient of conservatism provides an area-independent variable for comparisons of floristic quality. Wilhelm (Swink and Wilhelm 1979) provides insights for how to treat
spatially heterogenous habitats such as dune and swale communities near Lake Michigan.

Data Analysis

When distinguishing the qualitative condition of habitat remnants using FQA, a typical goal is to determine if the composition of two or more sites differs significantly from random expectation in the frequency distribution of the coefficients of conservatism. Three properties of the data influence the approach to be taken to make this determination. If the sample data have an acceptably normal distribution, have equal variances (homoscidastic), and are independent, then parametric statistics may be applied (but see below). If, however, the data lack central-normal tendency or have unequal variances (heteroscidastic), a nonparametric or distribution-free method is suggested (independence of the data is assumed). Central-normal tendency usually occurs with rank data when sample size (e.g., number of species) is greater than about 50 .

Methods used for examples in this text include parametric and nonparametric two-sample tests (e.g., two-sample t-tests with unpooled variances, the MannWhitney U test, and the Kolmogorov-Smirnov [K-S] two-sample goodness-of-fit test). Comparisons of multiple samples are tested with one-way analysis of variance (ANOVA), Tukey's Honestly Significant Difference (HSD) test, and the Kruskall-W allis ANOVA. All statistical analyses were made using Systat version 7.0 (Wilkinson 1997).

Results and Discussion

Coefficients of conservatism assigned to each taxon recognized here for the vascular flora of Illinois are presented in the appendix. The frequency distribution of coefficients of conservatism ($0-10$) for native species is left-skewed due to a strong peak at coefficient 10 (figure 2). Distribution of species by physiognomic classes indicates that most species in the Illinois flora are perennial dicot forbs, followed by adventive annual forbs (figure 3). Perennial sedges and grasses are notably more important in the native flora than in the adventive flora. The distribution of wetness coefficients for the native and adventive flora of Illinois (figure 4) shows that most taxa, including native and adventive, are (obligate) upland species; only about 91 adventive taxa are wetland species

Figure 2. Distribution of vascular plant species occurning in Illinois by coefficient of conservatism ranks. In addition to the native taxa, there are 957 adventive or non-native taxa ranked at coefficient 0 (not shown). See text for definitions of conservatism and ranks.

FIGURE 4. Distribution of native and adventave (non-native) taxa in the Illinois vascular flora by indicator wetness categories. Wetness categones are OBL (obligate wetland species), FACW (facultative wetland species), FAC (facultative species - equally likely to occur in wetland and upland habitats), FACU (facultative upland species), and UPL (obligate upland species).
($\sim 10 \%$ of all wetland species). Figure 5 shows the distribution of wetness categories.

The need for weighting species, rather than merely counting them, has been recognized (Diamond 1976). However, efforts to explain patterns of plant species survival and diversity in habitats have lacked any clear models that consider taxa modal to natural areas. It is understood in Grime's triangle that no vascular plant

Figure 3. Distribution of native and adventive (non-native) taxa in the Illinois vascular flora by physiognomic classes.

Figure 5. Distribution of native and adventive (non-native) taxa in the Illinois vascular flora by numerical wetness ranks.
$-5=\mathrm{OBL},-4=\mathrm{FACW}+,-3=\mathrm{FACW},-2=\mathrm{FACW}-,-1=\mathrm{FAC}+$, $0=\mathrm{FAC}, 1=\mathrm{FAC}-, 2=\mathrm{FACU}+, 3=\mathrm{FACU}, 4=\mathrm{FACU}-, 5=\mathrm{UPL}$.
species can survive with high levels of stress and disturbance. However, the C-S-R model does not accommodate species intolerant of stress and disturbance that also are lacking in competitive abilities. About 50\% of the native species of vascular plants in the Illinois flora were assigned coefficients ($0-6$) that more or less correspond to Grime's ruderals (16.8%) or competitors (33.8\%). Some taxa in this broad guild demonstrate
tolerance to environmental stress (e.g., Opuntia bumifusa, Quercus marilandica, and Vaccinium arboreum). The remaining flora-the species modal to relatively stable natural areas-may only loosely fit the stress-tolerator guild. Despite a long history of habitat loss and degradation in Illinois, there are remnant plant communities in localized little-disturbed areas on both nutrient-poor and nutrient-rich sites. These remnants typically are rich in species and include many taxa that lack ruderal characteristics, strong competitive abilities, or tolerance to high stress levels (e.g., Asclepias perennis, Caulophyllum thalictroides, Cypripedium reginae, Dalea candida, Lilium philadelphicum, Trillium grandiflorum, and Viburnum acerifolium).

Any assessment of ecosystem integrity based on a single index is likely to be insufficient to account for all relevant aspects. For example, the FQI or $\overline{\mathrm{C}}$ when reported alone can be misleading (figure 1). Also, species richness alone can be an insensitive indicator of habitat quality, since it is possible for a degraded site to support a similar or greater number of taxa than an undegraded site. Six measures of biological integrity for wetlands have been suggested by Keddy et al. (1993): species diversity, indicator guilds, exotic species, rare species, plant biomass, and amphibian biomass. Diversity is viewed as an essential indicator of integrity (Keddy et al. 1993). However, instead of only measuring species richness, Keddy et al. (1993) also recommend assessing guild diversity. FQA readily addresses the first four recommended measures, provides an index of wetness characteristics, and can be applied to wetland and upland vegetation; moreover, it can be expanded to include other community traits or particular interests such as INAI grades.

Examples of Floristic Quality Assessment

The following three examples of Floristic Quality Assessment application are not intended as proof or strenuous testing of the method, but rather as illustrations of cases where FQA and analytic methods are used in an attempt to differentiate vegetation quality. Example 1: Four Herbaceous Communities. Sites 1, 2, and 3 are prairie remnants. Site 1 is a high-quality Natural Area; Sites 2 and 3 have been damaged by past disturbances but are dominated by native prairie species. Site 4 is an old field with a history of cultivation. All sites are similar in area (~ 2 to 4 ha) and were surveyed with similar inventory efforts. Parameters of floristic quality from all sites are compared in table 1. Comparisons of all sites are shown for the cumulative proportion of species by conservatism ranks (figure 6) and distribution pattern of coefficients for each site using box plots (figure 7).

Data Analysis. Frequency of the coefficient of conservatism for each taxon present at each site are normally distributed and meet the equal variance assumptions, although data from the old field (Site 4, $\mathrm{n}=$ 51) are extremely skewed to the right (normality test $p=$ 0.084). Results are compared first using parametric techniques and then (as a precaution against possible nonnormal distributions and unequal group size) compared using results from nonparametric methods. For parametric tests, qualitative differences in composition among all four sites were examined with analysis of variance (ANOVA); multiple comparisons were examined with Tukey's HSD mean-separation technique (table 2). ANOVA indicates that a significant difference ($p<0.000001$) exists in floristic quality among the sites examined, as measured by the frequency

TABLE 1. Floristic integrity assessment summary data comparing four herbaceous communities (Sites 1-4).

Parameter	Site 1	Site 2	Site 3	Site 4
INAI Community Classsification	Dolomite Prairie	Dry-Mesic Prairie	Dolomite Prairie Old Field	
INAI Grade	B	C	C	na (E)
Total Species Richness	58	52	33	51
Native Species Richness	56	42	27	37
\% Adventive	3.4	19.2	18.2	27.5
Floristic Quality Index (FQI)	44.0	21.6	22.6	14.3
FQI (natives only)	44.8	24.1	25.0	16.8
Mean Conservatism	5.8	3.0	3.9	2.0
Mean Conservatism (natives only)	6.0	3.7	4.8	2.8
Mean Wetness	3.8	2.9	4.0	1.6
Mean Wetness (natives only)	3.8	2.9	3.9	1.1
\# Rare Species (T\&E)	1	0	0	0

Figure 6. Cumulative proportion of species by coefficients of conservatism comparing curves among four herbaceous communutues. See text for site descriptions. Significant differences in these profiles exist between Site 1 (high quality praine) and all other sites, and between Site 3 (degraded praine) and Site 4 (old field). No significant differences exust between Sites 2 (degraded praire) and 4 and Sites 2 and 3. See Table 3 for significance levels in parred comparisons.
distribution of the C values. Tukey's HSD test indicates the Natural Area (Site 1) is distinct from all other sites. The old field (Site 4), which contains a few prairie species, is distinct from one degraded prairie remnant (Site 3) but not the other (Site 2). The two degraded prairie remnants (Sites 2 and 3) are qualitatively similar (table 2).

Table 2. Analysis of vanance and Tukey Honestly Significant Difference multuple comparison test of probabilities for Florisuc Quality Assessment of four grasslands.

ANALYSIS OF VARIANCE						
Source	Sum-of Squares	DF	Mean Square	F-Ratio	P	
Site	424.556	3	141.519	20.652	0.000	
Error	1301.965	190	6.852			

Least SQuares Means

Site	LS Mean	SE	N
1	5.776	0.344	58
2	3.000	0.363	52
3	3.939	0.456	33
4	2.000	0.367	51

Tukey HSD Multiple Comparisons

Matrix of Parnwise Comparison Probabilities

Site	1	2	3	4
1	1.0000			
2	0.0000	1.0000		
3	0.0070	0.3720	1.0000	
4	0.0000	0.2120	0.0050	1.0000

Figure 7. Box plot of four grasslands (Sites 1-4) showing medians, quartiles, and spread of the coefficients of conservatism among the florisuc data. Honzontal bar in box is median; boundaries of the box represent 25 th and 75 th percentiles and describe the range of the middle half of the distribution; vertical lines extending from the box represent the range of observed values within 1.5 tumes the value of the interquartile range. See text for site descripuons.

The Kruskal-Wallis test is a one-way ANOVA on ranked data (a nonparametric test) and is suitable when the asssumptions of parametric tests can not be met. The results of the Kruskal-Wallis test agree with the ANOVA, showing that a significant difference exists among sites (test statistic is $44.4,3 \mathrm{df}, \mathrm{p}<0.000001$). Multiple comparisons can be made by performing Tukey's HSD mean-separation technique on ranked data (Zar 1984). Multiple (planned) comparisons also can be made with t-tests, Mann-Whitney U tests (the nonparametric equivalant to the t-test), or the Kolmogorov-Smirnov (K-S) goodness-of-fit two-sample test. However, with these two-sample tests, the probability levels must be adjusted (e.g., Bonferroni correction) to avoid inflating the Type I error rate. When comparisons are numerous, these tests can become too conservative (less statistical power), and the probability of Type II errors (probability of accepting the null hypothesis when it is false) is increased (Zolman 1993).

The results of these multiple comparisons are shown in table 3. The K-S test is based on the maximum difference between cumulative frequency distribution patterns among C values (for this example); it tests differences in the respective cumulative proportion curves (figure 6). The K-S test is more conservative (has less statistical power) when applied to rank data (Zar

Table 3. Floristic quality comparisons among four herbaceous communities. Probability levels shown compare results from two parametric tests and two nonparametric tests. See text for site descriptions. The adjusted critical values for the two-sample tests are shown for these multiple comparisons (e.g., $\mathrm{p}<0.0083$).
Parametric Tests
Tukey HSD Test, alpha $=0.05$

Site	1	2	3	4
1	1.000			
2	0.000	1.000		
3	0.007	0.372	1.000	
4	0.000	0.212	0.005	1.000

Student's t-test, adjusted alpha $=0.0083$

Site	1	2	3	4
1	1.000			
2	0.000	1.000		
3	0.007	0.138	1.000	
4	0.000	0.023	0.002	1.000
Nonparametric				
Sests, adjusted alpha $=0.0083$				
Site	1	2	3	4
1	1.000			
2	0.000	1.000		
3	0.008	0.139	1.000	
4	0.000	0.029	0.003	1.000

Kolmogorov-Smirnov Test, adjusted alpha $=0.0083$

Site	1	2	3	4
1	1.000			
2	0.000	1.000		
3	0.049	0.143	1.000	
4	0.000	0.124	0.009	1.000

1984) and generally yields the most conservative probability estimates among the tests compared here (table 3).

As with analysis of cumulative proportion curves among C values, membership differences for other guilds among sites or time sequences also can be examined. With time-series or comparative ecological management studies, changes in guilds (e.g., physiographic classes or wetness ranks) may be of specific interest and could be explored with the K-S test or contingency table analysis.
Example 2: Two Mesic Upland Forest Communities. Parameters of floristic integrity are compared in table 4. Woodland 1 (Grade C) had been grazed by livestock for an extended period, while Woodland 2 (Grade B) did not appear to have a damaging grazing history. Woodland 1 is larger and topographically more diverse with dissected ravines, different aspects (primarily N, W, and S), and localized dolomite outcrops. Woodland 2 is on a steep east-facing slope with local exposures of dolomite.

TABLE 4. Floristic integrity assessment summary data comparing two mesic upland forests. Woodland 1 has been grazed while Woodland 2, a smaller forest, apparently has not.

Parameter	Woods 1	Woods 2
INAI Community Classification	Mesic Upland Forest	Mesic Upland Forest
INAI Grade	C	B
Total Species Ruchness	93	57
Native Species Richness	91	57
\% Adventive	2.2	0
Floristic Quality lndex (FQI)	42.1	41.2
FQI (natives only)	42.6	41.2
Mean Conservatism	4.4	5.5
Mean Conservatism (natives only)	4.5	5.5
Mean Wetness	2.2	2.3
Mean Wetness (natives only)	2.3	2.3
\# Rare Species (T\&E)	1	0

Guild Diversity - Coef. Conserv. Figure $8 \quad$ Figure 8

Though many more species were recorded from Woodland 1, Woodland 2 is rated with a similar FQI and a higher $\overline{\mathrm{C}}$ (table 4). A comparison of the cumulative proportion of species by conservatism ranks at the two sites is shown in figure 8, and the distribution shape of coefficients for each site is given in figure 9 .

Data Analysis. A test of the difference (using nonparametric methods) between $\overline{\mathrm{C}}$ values indicates significant differences between sites (Mann-Whitney U statistic $=1939.0, \mathrm{p}=0.005$). However, the K-S goodness-of-fit comparison (figure 8) yields nonsignificant differences ($\mathrm{Dmax}=0.2111, \mathrm{p}=0.088$). The two tests, however, provide answers to two different questions and may not be contradictory. When the interest is in comparing mean coefficients of conservatism of the sites, the Mann-Whitney U statistic (or the parametric equivalent t-test) is the appropriate approach. When the interest is in a measure of differences in guild diversity, comparison and analysis of cumulative proportion profiles with the K-S test is suggested, but caution is warranted because of increased Type Π errors with this conservative test. Although these floristic data indicate that no differences exist in guild profiles, quantitative data on ground cover species (not available with these data) may reveal important differences in the guild profiles.
Example 3: Two Southern Flatwoods Communities. Parameters of floristic integrity are compared in table 5. Both sites are recognized by the INAI as high-quality Natural Areas. Lake Sara Flatwoods (Grade B) had been managed with prescribed fire for 20 years prior to study. Williams Creek Flatwoods (Grades A and B) had not

FIGURE 8. Cumulative proportion of species by coefficients of conservatusm comparing curves among two woodland communities. Woodland 1 (Grade C) is a larger site with a damaging grazing history, Woodland 2 (Grade B) is on a steep slope and apparently lacks a damaging grazing history. The maxumum difference between the profiles, tested with the Kolmogorov-Smirnov twosample goodness-of-fit test, is $D \max 0.2111$ ($\mathrm{n} 1=93, \mathrm{n} 2=57$; $p=0.088$). See text for additional site descriptions.
been managed prior to study. Both sites were among locations selected as part of an ecological study of flatwoods on the Illinoian till plain that examined quantitative aspects of vegetation and soils (Taft et al. 1995). Guild diversity among coefficients of conservatism is compared for both sites (figure 10); comparisons are shown for the cumulative proportion of species and cumulative proportion of Importance Value (IV $200=$ sum of relative frequency and relative cover).

Data Analysis. Several measures of diversity, including species richness, species density, dominance concentration, and Shannon-Weiner Equitability Index, indicate that significant differences exist between Lake Sara Flatwoods and the other sites studied, including Williams Creek Flatwoods (Taft et al. 1995). The fire management history at Lake Sara appears to have contributed to the greater measures of diversity there. However, a two-sample means test (t -test) on presenceabsence floristic data from the Lake Sara and Williams Creek flatwoods indicates that no significant differences exist between $\overline{\mathrm{C}}$ values. Guild diversity analysis based on cumulative proportion of species among C values (K-S test) also indicates that no differences exist (figure 10). In contrast, quantitative data for the ground cover vegetation (using IVs) reveal that significant differences exist ($\mathrm{p}<0.001$) in the pattern of abundance among C

Figure 9. Box plot for Woodland 1 (Grade C) and Woodland 2 (Grade B) showing medians, quartiles, and spread of the data. Horizontal bar in box is median; boundanes of the box represent 25 th and 75 th percentiles and describe the range of the middle half of the distribution; vertical lines extending from the box represent the range of observed values within 1.5 times the value of the interquartile range. See text for site descriptions.
values (figure 10).
Judging from the first two examples above, significance tests on FQA data have promise as aids in qualitatively differentiating vegetation as measured by floristic presence-absence data alone when the sites are characterized by distinctly different disturbance histories. However, the third example suggests that statistical tests based on floristic data alone may be relatively insensitive for differentiating among similar habitats with important

TABLE 5. Floristic integrty assessment summary data companing quadrat sampling data from the ground cover in two high-quality flatwoods. Lake Sara had a 20 -year history of prescribed fire prior to sampling.

Parameter	Lake Sara	Williams Creek
INAI Community Classsification	Southern	Southern
Flatwoods	Flatwoods	
INAI Grade	B	A and B
Total Species Richness	83	49
Native Species Richness	82	49
\% Adventive	1.2	0
Floristic Quality Index (FQ1)	37.6	27.7
FQI (natives only)	37.9	27.7
Mean Conservatism	4.1	4.0
Mean Conservatism (natives only)	4.2	4.0
Mean Wetness	2.7	1.8
Mean Wetness (natives only)	2.7	1.8
\# Rare Species (T\&E)	1	0
Guild Diversty - Coef. Conserv.	Figure 10	Figure 10

Figure 10. Cumulative proportion of species (top figure - no significant difference) and cumulative proportion of importance value (bottom figure - significant difference) by coefficients of conservatism (C) comparing curves among the ground cover vegetation of two high quality (Grades A and B) flatwoods remnants. Distribution patterns of importance values indicates that at Lake Sara a greater proportion of the species importance values are in the upper range of the C values. Lake Sara had a prior history of prescribed-fire management; Williams Creek Flatwoods had no prior vegetation management. See text for additional details.
differences in diversity and/or abundance patterns, particularly where only slight differences exist in levels of habitat degradation. These illustrations suggest that examining differences in FQI, $\overline{\mathrm{C}}$, guild profiles, and quantitative data may contribute to greater sensitivity in interpretation, when needed, in the assessment of floristic integrity.

Keddy et al. (1993) recommended establishing limits that reflect tolerable and desirable levels for indicator traits. We find that sites with an FQI of less than 20, based on "complete" inventory data, are usually severely degraded or derelict plant communities, or are very small habitat remnants. Sites with an FQI greater than 20 may be degraded but generally have potential for some level of recovery. Sites with indices greater than 35 are at least regionally noteworthy and often are sharply distinct from the predominant heavily degraded matrix areas in the landscape. Sites with indices greater than 45 are often also statewide-significant Natural Areas. Wetland or prairie reconstructions seldom exceed an FQI of 35 , at least in the short term, and only do so with intensive efforts. The long-term potential or stability of many reconstructions has not been determined. Many reconstructions in early developmental stages appear to be prone to rapid fluctuations in composition, diversity, and community structure. Limits and goals for other traits in FQA are variable according to the specific goals of ecosystem management. While goals for richness of exotic species may be 0 , this may not be achievable in certain regions of Illinois, particularly where aggressive, adventive species are abundant.

Testable Paradigm

A goal of many biological indices is to make predictions about responses to perturbations. FQA appears to meet this general goal. We predict that intact natural communities exposed to damage will show a reduction of floristic integrity to which FQI, $\overline{\mathrm{C}}$, and ultimately the cumulative proportion curves (among C values) are sensitive. For example, in a mesic tallgrass prairie remnant exposed to a regime of soil disturbances or sustained heavy grazing, populations of typical "conservative" species such as Amorpha canescens, Asclepias viridiflora, Baptisia leucophaea, Cacalia tuberosa, Polytaenia nuttalii, and Sporobolus heterolepis (C guild $7-10$) will decline to extirpation. Other species such as Andropogon gerardii, Sorghastrum nutans, and Panicum virgatum (C guild 4-6: Grime's competitors) temporarily may increase under certain circumstances in cover if not in frequency. If the disturbance is continued, species such as Solidago rigida, S. canadensis, Helianthus rigidus, Ratibida pinnata, and Asclepias verticillata (C guild 1-4: species that are intermediate between Grime's ruderals and competitors) become predominant, and adventive species often become common. If the frequency and
duration of the disturbance are increased, species with regeneration intervals shorter than the disturbance frequencies (C guild 0-2[3]: Grime's ruderals) become dominant, including many adventive species.

The reverse of this paradigm is the recovery of a degraded system. Restoration seeks to return damaged habitats or communities to their qualitative, compositional, and structural states prior to degradation. We predict that both the FQI and $\overline{\mathrm{C}}$ will increase at a site with the introduction of appropriate vegetation management. In the Midwest, many studies have been conducted, or are ongoing, that track the recovery of plant communities with the reintroduction of fire (Tester 1989; DeSelm and Clebsch 1991; Apfelbaum and Haney 1991; Wilhelm nd Masters 1994; Taft, unpublished data). FQA offers a method to track changes in floristic composition that may be helpful in goal development and assessment (Masters 1997). Again, quantitative data provide the most accurate account of the relative abundance of species at a site. Species at low population levels sometimes are at greater risk of extinction (May 1973). If, by chance, most of the taxa with high C values are at low population levels, the species pool may be unstable and susceptible to rapid changes in the FQI and $\overline{\mathrm{C}}$. As always, the cost in time needed to collect and analyze quantitative data has to be contrasted with the ease, rapidity, and qualitatively thorough nature of floristic presence-absence data collection. Inventory goals will determine the approach to be taken.

CONCLUSIONS

We offer Floristic Quality Assessment (FQA) for the Illinois flora as a versatile, relatively rapid, dispassionate, and repeatable method for making qualitative assessments of plant communities and for assessing effectiveness of ecological restoration activities. Using floristic inventory data, FQA summarizes several parameters of plant communities, including a weighted measure of species richness (FQI), a mean coefficient of conservatism ($\overline{\mathrm{C}}$), guild diversity, proportion of adventive taxa, wetness characteristics, relative importance of native species, physiognomic characteristics, and rare species. The FQI is calculated from coefficients of conservatism (on a scale of $0-10$) assigned to each taxon in the Illinois flora. The philosophy underlying the assignment of the coefficients is a recognition that plant species are unequal contributors to habitat quality: Factors that influence
diversity and composition also influence the FQI (e.g., habitat size, heterogeneity, disturbance history, and level of degradation). The mean coefficient of conservatism (and quadrat-based sampling methods) provides an areaindependent means of making qualitative comparisons among sites. FQA can accommodate measures of species abundance and can accompany other measures of natural community quality such as Illinois Natural Areas Inventory grades. We suggest testing the method by comparing floristic composition among sites and time intervals with known levels of disturbances and restoration activities using mean-separation techniques and analysis of guild diversity. Although similar results may be achieved with parametric statistics, nonparametric tests may be preferred for small sample sizes when all assumptions of parametric methods may not be met.

Glossary

Adventive - Not native to Illinois. Adventive is synonymous with the terms exotic and alien. Species that have limited natural ranges in Illinois, but that are widely planted or escaped, such as Pinus strobus and Robinia pseudoacacia, should be treated as adventive when encountered outside their natural Illinois distributions, and assigned a C value of O in the calculation of the floristic quality index and mean coefficient of conservatism.
Coefficient of Conservatism (C) - An integer from 0 to 10 assigned to each taxon in the Illinois flora and used in calculating the floristic quality index. Each value reflects an estimate of a plant's tendency to be restricted to "natural areas" (see detailed description in methods section). The mean coefficient of conservatism ($\overline{\mathrm{C}}$) is calculated by summing all coefficients in an inventory unit and dividing by number of species (N), or $\overline{\mathrm{C}}=\Sigma \mathrm{C} / \mathrm{N}$.
Conservatism - The tendency of a taxon to be restricted to natural areas. Similar to remnant dependency (Panzer et al. 1995).

Floristic Quality Index (FQI) - An index derived from floristic inventory data and calculated by the following formula from Swink and Wilhelm $(1979,1994)$:
$\mathrm{I}=\overline{\mathrm{C}}(\sqrt{\mathrm{N}})$, in which:
$\mathrm{C}=$ coefficient of conservatism
$\overline{\mathrm{C}}=\sum \mathrm{C} / \mathrm{N}$
$\mathrm{N}=$ number of taxa.

Guild Diversity - Guild diversity is measured from frequency distributions for species among traits such as physiognomic classes, wetness ranks (see Wetness), or conservatism ranks. These frequency data allow for graphical depictions of these guilds for comparison among sites and time periods (see Data Analysis in results section). Illinois Natural Areas Inventory Grades - Definitions taken from White (1978, p. 31):
Grade $\mathrm{A}=$ Relatively stable or undisturbed communities. Example: old growth, ungrazed forest.
Grade $B=$ Late successional or lightly disturbed communities. Example: old growth forest that was selectively logged 5 years ago.
Grade $C=$ Mid-successional or moderately to heavily disturbed communities. Example: young to mature secondgrowth forest.
Grade $D=$ Early successional or severely disturbed communities. Example: severely grazed forest of any age. Grade $E=$ Very early successional or very severely disturbed communities. Example: cropland.
Integrity, Ecological and Community - Integrity implies an unimpaired, complete condition. Ecological or community integrity refers to the degree to which self-correcting
properties in an ecosystem or community exert themselves when that community is exposed to disturbance.

Natural Area - In a broad sense, a natural area is considered to be a natural community that is (presumably) representative of the presettlement vegetation for the site. This general definition includes all Natural Areas (INAI sites graded A and B), but also areas that presently do not meet the standards for the INAI but that, with management and time, have potential for restoration to a community with floristic composition and diversity similar to the presettlement condition.
Physiognomy - Broadly defined, physiognomy includes plant habit (architectural characteristics), life history, and certain taxonomic classes. Physiognomic classes assigned to each taxon in the Illinois flora are Fern (including fern allies), Annual Forb, Biennial Forb, Perennial Forb, Annual Grass, Perennial Grass, Annual Sedge, Perennial Sedge, Herbaceous Vine, Woody Vine, Shrub, and Tree. Tracking physiognomic classes can be an important component of FQA, since it is theoretically possible for dramatic changes in community structure to occur without changes in the FQI or $\overline{\mathrm{C}}$.
Rare Species - Plant species listed as threatened or endangered by the Illinois Endangered Species Protection Board (Herkert 1991, 1994).
Species richness - Total number of native and adventive species.
Wetness - Wetness classification is based on the National Wetland Category for Region 3 of the United States Fish and Wildlife Service (Reed 1988). Plants are designated as Obligate Wetland, Facultative Wetland, Facultative, Facultative Upland, and Upland. These classes are further ranked by "+" and "-" values for the three facultative classes, thereby providing greater resolution. These nominal classes have been sorted into ordinate values:

$$
\begin{array}{rlrl}
-5 & =\text { Obligate Wetland } & \text { (OBL) } \\
-4 & =\text { Facultative Wetland }+ & & \text { (FACW }+ \text {) } \\
-3 & =\text { Facultative Wetland } & \text { (FACW) } \\
-2 & =\text { Facultative Wetland }- & \text { (FACW-) } \\
-1 & =\text { Facultative }+ & \text { (FAC+) } \\
0 & =\text { Facultative } & \text { (FAC) } \\
+1 & =\text { Facultative - } & \text { (FAC-) } \\
+2 & =\text { Facultative Upland }+ & \text { (FACU }+ \text {) } \\
+3 & =\text { Facultative Upland } \quad \text { (FACU) } \\
+4 & =\text { Facultative Upland - } & \text { (FACU-) } \\
+5 & =\text { Upland } & \text { (UPL). }
\end{array}
$$

Mean wetness is an average derived from all wetness (ordinate) values in a floristic inventory unit; it provides an index that characterizes the plant community in terms of hydrological characteristics.

ACKNOWLEDGMENTS

The authors gratefully acknowledge several reviewers who improved this manuscript with written comments and discussion. These include Mark Schwartz (University of California at Davis), Geoff Levin (Illinois Natural History Survey [INHS]), Ken Robertson (INHS), John White (Ecological Services), John Ebinger (Eastern Illinois University), and Mary Kay Solecki (Illinois Nature Preserves Commission). Marlin Bowles (The Morton Arboretum) reviewed the manuscript and provided alternative viewpoints. Jeff Brawn (INHS) and Susan Aref (University of Illinois at Champaign-Urbana) provided statistical advice during preliminary phases of this paper. Louis Iverson (U.S. Forest Service), Ken Robertson, and Mark Schwartz offered encouragement during early stages of the project that in many ways inspired the effort. We thank the Illinois Department of Transportation, Bureau of Design and Environment, for support and encouragement for the development of this paper. Finally, thanks to the Illinois Native Plant Society for providing a special issue for the publication of this paper.

About the Authors

John Taft is a research scientist for the Illinois Natural History Survey, where he performs botanical and ecological evaluations on Illinois Department of Transportation project areas throughout the state. He also conducts independent research in plant community ecology. John earned an M.S. in botany from Southern Illinois University and is a Ph.D. candidate at the University of Illinois in the field of natural resources and environmental sciences.

Gerould Wilhelm has a Ph.D. in botany from Southern Illinois University where he worked under Dr. Robert Mohlenbrock. Much of his botanical research has been centered in the Chicago region, where he coauthored with Floyd Swink the 3rd and 4th editions of Plants of the Cbicago Region; he has also compiled a lichen flora for the region. Gerry works as the principal environmental scientist for Conservation Design Forum, Inc. and as a research scientist for Conservation Research Institute.

Douglas Ladd is the director of science and stewardship for the Missouri Chapter of the Nature Conservancy. He received his M.S. in botany from Southern Illinois University, where he later worked with Dr. Robert Mohlenbrock on the Distribution of Illinois Vascular Plants. His recent publications include Tallgrass Prairie Wildflowers and Checklist and Bibliography of Missouri Lichens. One of his special interests is fire ecology.

Linda Masters is the director of Conservation Research Institute. She works as a restoration ecologist professionally and devotes volunteer efforts to natural land preservation and stewardship as well. She has developed the application computer programs for floristic quality assessment in the Chicago region and is continuing to adapt the methodology and programming for use in other geographical regions. Linda wrote the chapter "Vegetation Monitoring" in the 1997 publication The Tallgrass Restoration Handbook and will soon be receiving an M.S. in ecology from the University of Illinois at Chicago.

Literature Cited

Anderson, R. C. 1983. The eastern prairie-forest transition-an overview. Pages 86-92 in R. Brewer, ed. Proceedings of the Eighth North American Prairie Conference. Western Michigan University, Kalamazoo.
Anderson, R. C. 1990. The historic role of fire in the North American grassland. Pages $8-18$ in S. L. Collins and L. L. Wallace, eds. Fire in tallgrass prairie ecosystems. University of Oklahoma Press, Norman.

Andreas, B. K., and R. W. Lichvar. 1995. Floristic index for establishing assessment standards: a case study for northern Ohio. Technical Report WRP-DE-8. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

Apfelbaum, S. and A. Haney. 1991. Management of degraded oak savanna remnants in the upper Midwest: preliminary results from three years of study. Pages $81-89$ in G. V. Burger, J. E. Ebinger, and G. S. Wilhelm, eds. Proceedings of the Oak Woods Management Symposium. Eastern Illinois University, Charleston.

Ashton, P. S. 1989. Species richness in tropical forests. Pages 239-251 in L. B. Holm-Nielsen, I. C. Nielsen, and H. Balslev, eds. Tropical forests: botanical dynamics, speciation and diversity. Academic Press, London and San Diego.

Brown, S. and A. E. Lugo, 1994. Rehabilitation of tropical lands: a key to sustaining development. Restoration Ecology 2:97-111.

Clements, R. E. 1936. Nature and structure of the climax. Journal of Ecology 24:252-284.

Cohen, A. L., B. M. P. Singhakumara, and P. S. Ashton. 1995. Releasing rain forest succession: a case study in the Dicranopteris linearis fernlands of Sri Lanka. Restoration Ecology 3:261-270.
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302-10.

Crawley, M. J. 1986. The structure of plant communities. Pages 1-50 in M. J. Crawley, ed. Plant ecology. Blackwell Scientific Publications, Oxford.

Crovello, T. J. 1970. Analysis of character variation in ecology and systematics. Annual Review of Ecology and Systematics 1:55-98.

Curtis, J. T. 1959. The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Press, Madison.

Deam, C. C. 1940. Flora of Indiana. Indiana Department of Conservation, Division of Forestry. Indianapolis.

DeSelm, H. R. and E. E. C. Clebsch. 1991. Response types to prescribed fire in oak forest understory. Pages 22-33 in Nodvin, S. C. and T. A. Waldrop, eds. Fire and Environment: Ecological and Cultural Perspectives, Proceedings of an International Symposium, Knoxville, Tennessee, March 20-24, 1990. Southeastern Forest Experiment Station Technical Report SE-69, Asheville, North Carolina.

Diamond, J. M. 1976. Island biogeography and conservation: strategy and limitation. Science 193:1027-29.

Duffey, E. 1986. Editorial. Biological Conservation 36:197-198.

Gleason, H. A. 1952. The new Britton and Brown illustrated flora of the northeastern United States and adjacent Canada. 3 vols. New York Botanical Garden, New York.

Grime, J. P. 1974. Vegetation classification by reference to strategies. Nature 250:26-31.

Grime, J. P., J. G. Hodgson, and R. Hunt. 1988. Comparative plant ecology: a functional approach to common British species. Unwin \& Hyman, London.
Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Review 52:107-145.
Gunn, C. R., J. H. Wieresma, C. A. Ritchie, and J. H. Kirkbride, Jr. 1992. Families and genera of spermatophytes recognized by the Agricultural Service. U.S.D.A. Technical Bulletin No. 1796.

Herkert, J. R., ed. 1991. Endangered and threatened species of Illinois: status and distribution. Vol 1, Plants. Illinois Endangered Species Protection Board, Springfield.

Herkert, J. R. 1994. Endangered and threatened species of Illinois: status and distribution. Vol. 3, 1994 changes to the Illinois list of endangered and threatened species. Illinois Endangered Species Protection Board, Springfield.
Herman, K. D., L. A. Masters, M. R. Penskar, A. A. Reznicek, G. S. Wilhelm, and W. W. Brodowicz. 1996. Floristic quality assessment with wetland categories and computer application programs for the State of Michigan. Michigan Department of Natural Resources, Wildlife Division, Natural Heritage Program. In partnership with U. S. Department of Agriculture Natural Resources Conservation Service, Rose Lake Plant Materials Center, Michigan.
Heumann, B., D. Ladd, L. Wetstein (Masters), G. Wilhelm. 1993. Preliminary ecological assessment: Boyds Creek
and Chilton Creek tracts, Shannon and Carter counties, Missouri. The Nature Conservancy, St. Louis, Missouri.
Hodgson, J. G. 1986. Commonness and rarity in plants with species reference to the Sheffield flora. Biological Conservation 36:199-314.

Hunter, W. C., M. F. Carter, D. N. Pashley, and K. Barker. 1993. The Partners in Flight species prioritization scheme. Pages 109-119 in D. M. Finch, and P. W. Stangel, eds. Status and Management of Neotropical Migratory Birds, September 21-25, 1992, Estes Park, Colorado. General Technical Report RM229. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. Fort Collins, Colorado.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication 5, Champaign.
Kartesz, J. T. and R. Kartesz. 1980. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. University of North Carolina Press, Chapel Hill.
Kartesz, J. T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. 2nd ed. 2 vols. Timper Press, Portland, Oregon.
Keddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157-164.
Keddy, P. A., H. T. Lee, and I. C. Wisheu. 1993. Choosing indicators of ecosystem integrity: wetlands as a model system. Pages 61-82 in S. Woodley, J. Kay, and G. Francis, eds. Ecological integrity and the management of ecosystems. St. Lucie Press, Boca Raton, Florida.
Ladd, D. The Missouri floristic quality assessment system. Nature Conservancy. The Nature Conservancy, St. Louis, Missouri.

Little, E. L., Jr. 1979. Checklist of United States trees (native and naturalized). U.S.D.A. Forest Service, Agriculture Handbook 541.
Lovejoy, T. E. 1975. Rehabilitation of degraded tropical forest lands. The Environmentalist 5:13-20.
MacArthur, R. H. and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey.
Majer, J. D. and G. Beeston. 1996. The biological integrity index: an illustration using ants in western Australia. Conservation Biology 10:65-73.

Masters, L. 1997. Monitoring vegetation. Pages 279-301 in S. Packard and C. F. Mutel, ed. The tallgrass restoration handbook: for prairies, savannas, and woodlands. Island Press, Washington, D.C. and Covelo, California.
Masters, L. Floristic quality assessment for Illinois: computer program. In preparation.
May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey.
Mohlenbrock, R. H. 1986. Guide to the vascular flora of Illinois. Revised and enlarged edition. Southern Illinois University Press, Carbondale and Edwardsville.
Mohlenbrock, R. H. and D. M. Ladd. 1978. Distribution of Illinois vascular plants. Southern Illinois University Press, Carbondale and Edwardsville.
Morin, N. R., general editor. 1993 and continuing. Flora of North America north of Mexico. Oxford University Press, Oxford.

Oldham, M. J., W. D. Bakowsky, and D. A. Sutherland. 1995. Floristic quality assessment system for southern Ontario. Natural Heritage Information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario.
Panzer, R., D. Stillwaugh, R. Gnaedinger, G. Derkovitz. 1995. Remnant dependence among insects of the Chicago region. Natural Areas Journal 15:101-116.
Rabinowitz, D. 1981. Seven forms of rarity. Pages 205-218 in H . Synge, ed. The biological aspects of rare plant conservation. Wiley Press, Chichester, England.
Reed, P. B., Jr. 1988. National list of plant species that occur in wetlands: north central (region 3). U.S. Fish and Wildlife Service Biological Report 88 (26.3).

Regier, H. A. 1993. The notion of natural and cultural integrity. Pages 3-18 in S. Woodley, J. Kay, and G. Francis, eds. Ecological integrity and the management of ecosystems. St. Lucie Press, Boca Raton, Florida.
Robertson, K. R. 1994. Woody plants of Illinois. Erigenia, no. 13:20-38.

Schwartz, M. W. 1993. The search for pattern among rare plants: are primitive species more likely to be rare? Biological Conservation 64:121-127.
Sheviak, C. J. 1974. An introduction to the ecology of the Illinois Orchidaceae. Illinois State Museum Scientific Papers XIV. Springfield.
Soil Conservation Service. 1982. National list of scientific plant names. 2 vols. U.S.D.A. Soil Conservation Service SCS-TP-159.

Steyermark, J. 1963. Flora of Missouri. Iowa University Press, Ames.

Swink, F. and G. Wilhelm. 1979. Plants of the Chicago region. Revised and expanded edition with keys. The Morton Arboretum, Lisle, Illinois.

Swink, F. and G. Wilhelm. 1994. Plants of the Chicago region. 4th ed. Indiana Academy of Science, Indianapolis.

Taft, J. B. 1995. Ecology, distribution, and rareness patterns of threatened and endangered prairie plants in Illinois. Pages 21-31 in T. E. Rice, ed. Proceedings of the Fourth Central Illinois Prairie Conference. Milliken University, Decatur, Illinois.
Taft, J. B. 1996. Reading the signs: plants as indicators of site history. Illinois Steward, Spring 1996:20-24.
Taft, J. B. 1997. Savannas and open woodlands. Pages 24-54 in M. W. Schwartz, ed. Conservation in highly fragmented landscapes. Chapman and Hall Press, New York.

Taft, J. B., M. W. Schwartz, and L. R. Phillippe. 1995. Vegetation ecology of flatwoods on the Illinoian till plain. Journal of Vegetation Science 6:647-666.

Tester, J. R. 1989. Effects of fire frequency on oak savanna in east-central Minnesota. Bulletin of the Torrey Botanical Club 116:134-144.
Tilman, D. 1986. Resources, competition and the dynamics of plant communities. Pages 51-75 in M. J. Crawley, ed. Plant ecology. Blackwell Scientific Publications, Oxford.
Tilman, D. and S. Pacala. 1993. The maintenance of species richness in plant communities. Pages 13-25 in R. E. Ricklefs and D. Schluter, eds. Species diversity in ecological communities. The University of Chicago Press, Chicago.

United States Fish \& Wildlife Service. 1988. Endangered \& threatened wildlife and plants. 50 CFR $17.11 \& 17.12$. United States Department of Interior. Washington, D.C.

Walker, J. and R. K. Peet. 1983. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio 55:163-179.
White, J. 1978. Illinois natural areas inventory technical report. Vol.1, Survey methods and results. Illinois Natural Areas Inventory, Urbana.

White, J. and M. H. Madany. 1978. Classification of natural communities in Illinois. Pages 310-405 (Appendix 30) in J. White. Illinois natural areas inventory technical report. Vol. 1, Survey methods and results. Illinois Natural Areas Inventory, Urbana.

Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147:250-260.
Wilhelm, G. S. 1977. Ecological assessment of open land areas in Kane County, Illinois. Kane County Urban Development Division. Geneva, Illinois.
Wilhelm, G. S. 1991. Implications of changes in floristic composition of the Morton Arboretum's East Woods. Pages 31-54 in G. V. Burger, J. E. Ebinger, and G. S. Wilhelm, eds. Proceedings of the Oak Woods Management Workshop. Eastern Illinois University, Charleston.

Wilhelm, G. S. 1992. Technical comments on the proposed revisions to the 1989 wetland delineation manual. Erigenia, no. 12, 41-50.
Wilhelm, G. and D. Ladd. 1988. Natural area assessment in the Chicago region. Pages 361-375 in Transactions of the 53rd North American Wildlife \& Natural Resources Conference.
Wilhelm, G. and L. Masters. 1994. Floristic changes after five growing seasons in burned and unburned woodland. Erigenia, no. 13:141-150.
Wilkinson, L. 1997. Systat 7.0. Systat software products, SPSS Inc., Chicago.
Zar, J. H. 1984. Biostatistical analysis. 2nd ed. PrenticeHall, Englewood Cliffs, New Jersey.
Zolman, J. F. 1993. Biostatistics: experimental design and statistical inference. Oxford University Press, Oxford, England.

APPENDIX: Vegetation of Illinois Database

The following is a listing of selected vascular plant taxa, sorted alphabetically by genus and then by species, for use in the application of Floristic Quality Assessment in Illinois. Native species are rendered in a standard type face, while introduced or adventive species are shown in ALL CAPS; each is followed by a single colloquial name. This listing is not to be construed as an authoritative treatise on the flora of Illinois, nor was there any attempt to justify the Latin name as nomenclaturally legitimate. Indeed, for taxonomic concept and nomenclature, we have approximated Mohlenbrock (1986), wherein authorities for most of the names may be found.

Each species is preceded by a six-letter acronym, based upon the first three letters of the genus followed by the first three letters of the species, or by the first two letters of the species and the first letter of a subspecific taxon (e.g. Abutilon theophrasti $=$ ABUTHE; Acer $r u b r u m$ var. drummondii (ACERUD). Where ambiguity results, such as in Polygonum hydropiper (POLHYR) and Polygonum hydropiperoides (POLHYS) a nonintuitive acronym has been created. Use of such acronyms makes field notes go much faster, and the
acronyms serve as easily rendered extraction tags for the plants in the data base.

Following the acronym is the assigned C value (coefficient of conservatism) for native species or by an asterisk for non-native species. After the colloquial name is the coefficient of wetness, followed by its corresponding National Wetland Category. The categories were assigned based on observations of their behavior throughout "Region 3" of the U.S. Fish \& Wildlife Service. Obligate wetland species (OBL, -5) have 99% probability of occurring in wetlands, facultative/wet species (FACW, -3) a $67 \%-99 \%$ probability, facultative species (FAC, 0) a $34 \%-66 \%$ probability, facultative/upland species (FACU, 3) a $1 \%-33 \%$ probability, and upland species (UPL, 5) have less than a 1% probability of occurring in wetlands.

Each species has been designated with a physiognomic characteristic, using commonly applied terms such as tree, shrub, forb, vine, grass, sedge, and cryptogam. The forbs, grasses, and sedges are preceded by modifiers such as A (annual), B (biennial), and P (perennial). These are followed by a family name, following the delineation in Mohlenbrock (1986).
APPIENIDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name
ABEESC	*	ABELMOSCHUS ESCULENTUS
ABUTHE	*	ABUTILON THEOPHRASTI
ACADEA	8	Acalypha deamii
ACAGRA	4	Acalypha gracilens
ACAOST	1	Acalypha ostryaefolia
ACARHO	0	Acalypha rhomboidea
ACAVIR	2	Acalypha virginica
ACEFLO	5	Acer floridanum
ACEGIN	-	ACER GINNALA
ACENEG	1	Acer negundo
ACENIG	6	Acer nigrum
ACEPLA	*	ACER PLATANOIDES
ACEPSE	*	ACER PSEUDOPLATANUS
ACERUR	5	Acer rubrum
ACERUD	5	Acer rubrum v. drummondii
ACERUT	5	Acer rubrum v. triloburn
ACESAI	1	Acer saccharinum
ACESAU	4	Acer saccharum
ACHMIL	*	ACHILLEA MILLEFOLIUM
ACOAME	4	Acorus americanus
ACTPAC	7	Actaea pachypoda
ACTRUB	8	Actaea rubra
ADIPED	6	Adiantum pedatum
ADLFUN	*	ADLUMIA FUNGOSA
ADOMOS	10	Adoxa moschatellina
AEGPOD	*	AEGOPODIUM PODAGRARIA
AESGLA	5	Aesculus giabra
AESHIP	*	AESCULUS HIPPOCASTANUM
AESPAV	7	Aesculus pavia
AETCYN	*	AETHUSA CYNAPIUM
AGAASP	10	Agalinis aspera
AGABES	5	Agalinis besseyana
AGAFAS	6	Agalinis fasciculata
AGAGAT	10	Agalinis gattingeri
AGAPAU	7	Agalinis paupercula
AGAPUR	6	Agalinis purpurea
AGASKI	9	Agalinis skinneriana
AGATEN	5	Agalinis tenuifolia
AGANEP	4	Agastache nepetoides
AGASCR	5	Agastache scrophulariaefolia
AGRGRY	3	Agrimonia gryposepala
AGRPAR	5	Agrimonia parviflora
AGRPUB	4	Agrimonia pubescens

Physiognomy	W	Wet	Family
P-FORB	3	FACU	ROSACEAE
P-GRASS	5	UPL	POACEAE
P-GRASS	5	UPL	POACEAE
P-GRASS	5	UPL	POACEAE
P-GRASS	3	FACU	POACEAE
P-GRASS	3	FACU	POACEAE
P-GRASS	4	FACU-	POACEAE
P-GRASS	4	FACU-	POACEAE
P-GRASS	0	FAC	POACEAE
P-GRASS	3	FACU	POACEAE
P.FORB	5	UPL	CARYOPHYLLACEAE
P-GRASS	-3	FACW	POACEAE
P-GRASS	-3	FACW	POACEAE
P-GRASS	-3	FACW	POACEAE
A-GRASS	5	UPL	POACEAE
P-GRASS	1	FAC-	POACEAE
P-GRASS	1	FAC-	POACEAE
P-GRASS	0	FAC	POACEAE
TREE	5	UPL	SIMAROUBACEAE
A-GRASS	3	FACU	POACEAE
P-FORB	5	UPL	LAMIACEAE
P.FORB	5	UPL	LAMIACEAE
TREE	5	UPL	MIMOSACEAE
P-FORB	5	UPL	MALVACEAE
P-FORB	0	FAC	LILIACEAE
P-FORB	-5	OBL	ALISMATACEAE
P-FORB	-5	OBL	ALISMATACEAE
B-FORB	0	FAC	BRASSICACEAE
P-FORB	5	UPL	LILIACEAE
P-FORB	2	$\mathrm{FACU}+$	LILIACEAE
P-FORB	3	FACU	LILIACEAE
P.FORB	5	UPL	LILIACEAE
P-FORB	5	UPL	LILIACEAE
P-FORB	5	UPL	LILIACEAE
P-FORB	5	UPL	LILIACEAE
P-FORB	5	UPL	LILIACEAE
P.FORB	5	UPL	LILIACEAE
P.FORB	5	UPL	LILIACEAE
P.FORB	5	UPL	LILIACEAE
P.FORB	5	UPL	LILIACEAE
P.FORB	2	$\mathrm{FACU}+$	LILIACEAE
P.FORB	3	FACU	LILIACEAE
TREE	-2	FACW.	BETULACEAE

Acronym	CC	Sclentific Name
ALNINC	7	Alnus incana v . rugosa
ALNSER	7	Alnus serrulata
ALOAEQ	6	Alopecurus aequalis
ALOCAR	0	Alopecurus carolinianus
ALOPRA	*	ALOPECURUS PRATENSIS
ALYALY	*	ALYSSUM ALYSSOIDES
AMAALB	0	Amaranthus albus
AMAAMB	0	Amaranthus ambigens
AMAARE	*	AMARANTHUS ARENICOLA
AMACAU	*	AMARANTHUS CAUDATUS
AMACRU	-	AMARANTHUS CRUENTUS
AMAGRA	*	AMARANTHUS GRAECIZANS
AMAHYB	*	AMARANTHUS HYBRIDUS
AMAPAL	*	AMARANTHUS PALMERI
AMAPOW	*	AMARANTHUS POWELLII
AMARET	*	AMARANTHUS RETROFLEXUS
AMARUD	0	Amaranthus rudis
AMASPI	-	AMARANTHUS SPINOSUS
AMATUB	1	Amaranthus tuberculatus
AMBART	0	Ambrosia artemisiifolia
AMBBID	0	Ambrosia bidentata
AMBPSI	2	Ambrosia psilostachya
AMBTOM	-	AMBROSIA TOMENTOSA
AMBTRI	0	Ambrosia trifida
AMEARB	7	Amelanchier arborea
AMEHUM	7	Amelanchier humilis
AMEINT	8	Amelanchier interior
AMELAE	7	Amelanchier laevis
AMESAN	10	Amelanchier sanguinea
AMMAUR	8	Ammannia auriculata
AMMCOC	5	Ammannia coccinea
AMMBRE	9	Ammophila breviligulata
AMOCAN	8	Amorpha canescens
AMOFRF	6	Amorpha fruticosa
AMOFRA	6	Amorpha fruticosa v . angustifolia
AMOFRC	6	Amorpha fruticosa v. croceolanata
AMONIT	9	Amorpha nitens
AMPARB	6	Ampelopsis arborea
AMPBRE	*	AMPELOPSIS BREVIPEDUNCULATA
AMPCOR	2	Ampelopsis cordata
AMPDRA	*	AMPHIACHYRIS DRACUNCULOIDES
AMPBRB	4	Amphicarpa bracteata
AMPBRC	4	Amphicarpa bracteata v. comosa

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family	
AMSLYC	*	AMSINCKIA LYCOPSOIDES	TARWEED	A-FORB	5	UPL	BORAGINACEAE	
AMSSPE	*	AMSINCKIA SPECTABILIS	FIDDLE-NECK	A-FORB	5	UPL	BORAGINACEAE	
AMSTAT	6	Amsonia tabernaemontana	BLUE STAR	P-FORB	-3	FACW	APOCYNACEAE	
AMSTAS	6	Amsonia tabernaemontana v . salicifolia	BLUE STAR	P-FORB	- 3	FACW	APOCYNACEAE	
ANAARV	-	ANAGALLIS ARVENSIS	POOR MAN'S WEATHERGLASS	A-FORB	5	UPL	PRIMULACEAE	
ANAMIN	5	Anagallis minima	CHAFFWEED	A-FORB	4	FACU-	PRIMULACEAE	
ANAMAR	-	ANAPHALIS MARGARITACEA	PEARLY EVERLASTING	P-FORB	5	UPL	ASTERACEAE	
ANCOFF	-	ANCHUSA OFFICINALIS	COMMON ALKANET	P-FORB	5	UPL	boraginaceat	
ANDPOL	10	Andromeda polifolia v. glaucophylla	BOG ROSEMARY	SHRUB	-5	OBL	ERICACEAE	
ANDELL	3	Andropogon elliottii	ELLIOTT'S BROOM SEDGE	P-GRASS	5	UPL	POACEAE	
ANDGER	5	Andropogon gerardii	BIG BLUESTEM	P-GRASS	1	FAC-	POACEAE	
ANDHAL	-	ANDROPOGON HALLII	SAND BLUESTEM	P-GRASS	5	UPL	POACEAE	
ANDTER	8	Andropogon ternarius	BEARD GRASS	P-GRASS	3	FACU	POACEAE	
ANDVIR	1	Andropogon virginicus	BROOM SEDGE	P-GRASS	1	FAC-	POACEAE	
ANDOCC	4	Androsace occidentalis	ANDROSACE	A-FORB	4	FACU-	PRIMULACEAE	
ANECAN	4	Anemone canadensis	MEADOW ANEMONE	P-FORB	-3	FACW	RANUNCULACEAE	
ANECAR	9	Anemone caroliniana	CAROLINA ANEMONE	P-FORB	5	UPL	RANUNCULACEAE	
ANECYL	8	Anemone cylindrica	CANDLE ANEMONE	P.FORB	5	UPL	RANUNCULACEAE	
ANEQUI	7	Anemone quinquefolia	WOOD ANEMONE	P-FORB	0	FAC	RANUNCULACEAE	
ANEVIR	4	Anemone virginiana	TALL ANEMONE	P-FORB	5	UPL	RANUNCULACEAE	
ANEGRA	*	ANETHUM GRAVEOLENS	DILL	A-FORB	5	UPL	APIACEAE	
ANGATR	6	Angelica atropurpurea	ANGELICA	P-FORB	-5	OBL	APIACEAE	
ANGVEN	8	Angelica venenosa	WOOD ANGELICA	P-FORB	5	UPL	APIACEAE	
ANOCRI	-	ANODA CRISTATA	CRESTED ANODA	A-FORB	0	FAC	MALVACEAE	
ANTNEG	4	Antennaria neglecta	CAT'S FOOT	P-FORB	5	UPL	ASTERACEAE	
ANTPLA	4	Antennaria plantaginifolia	PUSSY TOES	P-FORB	5	UPL	ASTERACEAE	
ANTARV	-	ANTHEMIS ARVENSIS	CORN CHAMOMILE	A-FORB	5	UPL	ASTERACEAE	
ANTCOT	*	ANTHEMIS COTULA	DOG FENNEL	A-FORB	3	FACU	ASTERACEAE	
ANTTIN	*	ANTHEMIS TINCTORIA	GOLDEN CHAMOMILE	P-FORB	5	UPL	ASTERACEAE	
ANTARI	*	ANTHOXANTHUM ARISTATUM	ANNUAL SWEET GRASS	A-GRASS	5	UPL	POACEAE	
ANTODO	*	ANTHOXANTHUM ODORATUM	SWEET VERNAL GRASS	P-GRASS	3	FACU	POACEAE	
ANTCER	*	ANTHRISCUS CEREFOLIUM	CHERVIL	A-FORB	5	UPL	APIACEAE	
ANTSYL	*	ANTHRISCUS SYLVESTRIS	FALSE CHERVIL	B-FORB	5	UPL	APIACEAE	
ANTVUL	*	ANTHYLLIS VULNERARIA	LADY'S FINGERS	A-FORB	5	UPL	FABACEAE	
ANTMAJ	*	ANTIRRHINUM MAJUS	COMMON SNAPDRAGON	P-FORB	5	UPL	SCROPHULARIACEAE	
APIAME	3	Apios americana	GROUND NUT	H-VINE	-3	FACW	FABACEAE	
APIPRI	10	Apios priceana	PRICE'S GROUNDNUT	H-VINE	0	FAC	FABACEAE	
APLHYE	7	Aplectrum hyemale	ADAM-AND-EVE	P-FORB	1	FAC-	ORCHIDACEAE	
APOAND	6	Apocynum androsaemifolium	SPREADING DOGBANE	P-FORB	5	UPL	APOCYNACEAE	
APOCAN	2	Apocynum cannabinum	DOGBANE	P-FORB	0	FAC	APOCYNACEAE	
APOMED	6	Apocynum \times medium	INTERMEDIATE DOGBANE	P-FORB	5	UPL	APOCYNACEAE	APOSIB
	2	Apocynum sibiricum	INDIAN HEMP	P-FORB	-1	FAC+	APOCYNACEAE	
AQUCAN	5	Aquilegia canadensis	COLUMBINE	P-FORB	1	FAC-	RANUNCULACEAE	

Physiognomy	w	Wet	Family
P-FORB	5	UPL	RANUNCULACEAE
A.FORB	5	UPL	BRASSICACEAE
B-FORB	5	UPL	BRASSICACEAE
B-FORB	5	UPL	BRASSICACEAE
B-FORB	3	FACU	BRASSICACEAE
B-FORB	5	UPL	BRASSICACEAE
B-FORB	3	FACU	BRASSICACEAE
B-FORB	5	UPL	BRASSICACEAE
B-FORB	4	FACU-	BRASSICACEAE
B-FORB	5	UPL	BRASSICACEAE
SHRUB	5	UPL	ARALIACEAE
SHRUB	5	UPL	ARALIACEAE
P-FORB	5	UPL	ARALIACEAE
SHRUB	3	FACU	ARALIACEAE
P-FORB	5	UPL	ARALIACEAE
SHRUB	-2	FACW-	ARALIACEAE
B-FORB	5	UPL	ASTERACEAE
B-FORB	5	UPL	ASTERACEAE
B-FORB	5	UPL	ASTERACEAE
SHRUB	5	UPL	ERICACEAE
A-FORB	0	FAC	CARYOPHYLLACEAE
A-FORB	5	UPL	PAPAVERACEAE
A.FORB	5	UPL	PAPAVERACEAE
P-FORB	-3	FACW	ARACEAE
P-FORB	-2	FACW-	ARACEAE
A-GRASS	5	UPL	POACEAE
A-GRASS	3	FACU	POACEAE
A-GRASS	5	UPL	POACEAE
A-GRASS	3	FACU	POACEAE
A-GRASS	5	UPL	POACEAE
A-GRASS	4	FACU.	POACEAE
A-GRASS	5	UPL	POACEAE
P-GRASS	5	UPL	POACEAE
A-GRASS	5	UPL	POACEAE
A-GRASS	5	UPL	POACEAE
P-FORB	5	UPL	ARISTOLOCHIACEAE
P-FORB	-1	FAC +	ARISTOLOCHIACEAE
W-VINE	0	FAC	ARISTOLOCHIACEAE
P-FORB	-5	OBL	BRASSICACEAE
P-FORB	0	FAC	BRASSICACEAE
SHRUB	-2	FACW-	ROSACEAE
SHRUB	-2	FACW-	ROSACEAE
P-GRASS	3	FACU	POACEAE

Acronym	CC	Scientific Name	Common Name
ARTABR	*	ARTEMISIA ABROTANUM	SOUTHERNWOOD
ARTABS	*	ARTEMISIA ABSINTHIUM	COMMON WORMWOOD
ARTANN	-	ARTEMISIA ANNUA	ANNUAL WORMWOOD
ARTBIE	*	ARTEMISIA BIENNIS	BIENNIAL WORMWOOD
ARTCAM	4	Artemisia campestris	BEACH WORMWOOD
ARTDRA	9	Artemisia dracunculus	FALSE TARRAGON
ARTFRI	-	ARTEMISIA FRIGIDA	FRINGED SAGEBRUSH
ARTLUD	2	Artemisia ludoviciana	WHITE SAGE
ARTPON	-	ARTEMISIA PONTICA	ROMAN WORMWOOD
ARTSER	10	Artemisia serrata	SAW-TOOTHED SAGEBRUSH
ARTVUL	-	ARTEMISIA VULGARIS	MUGWORT
ARUITA	*	ARUM ITALICUM	ARUM
ARUDIO	7	Aruncus dioicus	GOAT'S-BEARD
ARUGIG	5	Arundinaria gigantea	GIANT CANE
ARUDON	-	ARUNDO DONAX	GIANT REED
ASACAN	5	Asarum canadense	CANADA WILD GINGER
ASCAMP	7	Asclepias amplexicaulis	SAND MILKWEED
ASCEXA	8	Asclepias exaltata	POKE MILKWEED
ASCHIR	6	Asclepias hirtella	TALL GREEN MILKWEED
ASCINC	4	Asclepias incarnata	SWAMP MILKWEED
ASCMEA	10	Asclepias meadii	MEAD'S MILKWEED
ASCONT	10	Asclepias otarioides	WOOLLY MILKWEED
ASCOVA	10	Asclepias ovalifolia	OVAL MILKWEED
ASCPER	10	Asclepias perennis	WHITE MILKWEED
ASCPUR	7	Asclepias purpurascens	PURPLE MILKWEED
ASCQUA	6	Asclepias quadrifolia	WHORLED MILKWEED
ASCSPE	*	ASCLEPIAS SPECIOSA	SHOWY MILKWEED
ASCSTE	10	Asclepias stenophylla	NARROW-LEAVED GREEN MILKWEED
ASCSUL	7	Asclepias sullivantii	PRAIRIE MILKWEED
ASCSYR	0	Asclepias syriaca	COMMON MILKWEED
ASCTUB	5	Asclepias tuberosa v. interior	BUTTERFLYWEED
ASCVAR	B	Asclepias variegata	VARIEGATED MILKWEED
ASCVER	1	Asclepias verticillata	HORSETAIL MILKWEED
ASCVIF	9	Asclepias viridiflora	GREEN MILKWEED
ASCVIS	6	Asclepias viridis	GREEN-FLOWERED MILKWEED
ASITRI	4	Asimina triloba	PAPAW
ASPOFF	*	ASPARAGUS OFFICINALIS	GARDEN ASPARAGUS
ASPPRO	*	ASPERUGO PROCUMBENS	MADWORT
ASPBRA	10	Asplenium bradleyi	BRADLEY'S SPLEENWORT
ASPEBE	10	Asplenium \times ebenoides	SCOTT'S SPLEENWORT
ASPGRA	10	Asplenium \times gravesii	GRaves' SPLEENWORT
ASPHER	10	Asplenium \times herb-wagneri	WAGNER'S SPLEENWORT
ASPKEN	10	Asplenium \times kentuckiense	KENTUCKY SPLEENWORT

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family	
ASPPIN	10	Asplenium pinnatifidum	PINNATIFID SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASPPLA	4	Asplenium platyneuron	EBONY SPLEENWORT	FERN	3	FACU	ASPLENIACEAE	
ASPRES	10	Asplenium resiliens	BLACK SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASPRHI	8	Asplenium rhizophyllum	WALKING FERN	FERN	5	UPL	ASPLENIACEAE	
ASPRUT	10	Asplenium ruta-muraria	WALL-RUE SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASPSHA	10	Asplenium \times shawneense	SHAWNEE SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	ASPTRT
	10	Asplenium trichomanes	MAIDENHAIR SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASPTRO	10	Asplenium trichomanes v. quadrivalens	MAIDENHAIR SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASPTRU	10	Asplenium \times trudellii	TRUDELL'S SPLEENWORT	FERN	5	UPL	ASPLENIACEAE	
ASTAME	5	Aster \times amethystinus	AMETHYST ASTER	P-FORB	0	FAC	ASTERACEAE	
ASTANO	8	Aster anomalus	BLUE ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTAZU	7	Aster azureus	SKY-BLUE ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTBOR	10	Aster borealis	RUSH ASTER	P-FORB	-5	OBL	ASTERACEAE	
ASTBRA	*	ASTER BRACHYACTIS	RAYLESS ASTER	P-FORB	0	FAC	ASTERACEAE	
ASTCOR	6	Aster cordifolius	HEART-LEAVED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTDRU	3	Aster drummondii	DRUMMOND'S ASTER	P-FORB	3	FACU	ASTERACEAE	
ASTDUM	5	Aster dumosus	BUSHY ASTER	P-FORB	-1	FAC +	ASTERACEAE	
ASTERI	4	Aster ericoides	HEATH ASTER	P-FORB	4	FACU-	ASTERACEAE	
ASTFIR	5	Aster firmus	SHINING ASTER	P-FORB	-5	OBL	ASTERACEAE	
ASTFUR	9	Aster furcatus	FORKED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTLAE	8	Aster laevis	SMOOTH BLUE ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTLAT	2	Aster laterifiorus	SIDE-FLOWERING ASTER	P-FORB	-2	FACW.	ASTERACEAE	
ASTLIN	9	Aster linariifolius	FLAX-LEAVED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTMAC	9	Aster macrophyllus	BIG-LEAVED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTNOV	4	Aster novae-angliae	NEW ENGLAND ASTER	P-FORB	-3	FACW	ASTERACEAE	
ASTOBL	7	Aster oblongifolius	AROMATIC ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTONT	4	Aster ontarionis	ONTARIO ASTER	P-FORB	0	FAC	ASTERACEAE	
ASTPAR	3	Aster parviceps	SMALL-HEADED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTPAT	6	Aster patens	PURPLE DAISY	P-FORB	5	UPL	ASTERACEAE	
ASTPIL	0	Aster pilosus	HAIRY ASTER	P-FORB	4	FACU-	ASTERACEAE	
ASTPRA	4	Aster praealtus	WILLOW ASTER	P-FORB	-5	OBL	ASTERACEAE	
ASTPRE	10	Aster prenanthoides	CROOKED ASTER	P-FORB	-5	DBL	ASTERACEAE	
ASTPUN	7	Aster puniceus	BRISTLY ASTER	P-FORB	-5	OBL	ASTERACEAE	
ASTSAG	4	Aster sagittifolius	ARROW-LEAVED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTSCH	10	Aster schreberi	SMOOTH FORKED ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTSER	9	Aster sericeus	SILKY ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTSHO	6	Aster shortii	SHORT'S ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTSIM	3	Aster simplex	PANICLED ASTER	P-FORB	-5	OBL	ASTERACEAE	
ASTSUB	*	ASTER SUBULATUS	EXPRESSWAY ASTER	A-FORB	-5	OBL	ASTERACEAE	
ASTTAT	*	ASTER TATARICUS	TARTARIAN ASTER	P-FORB	5	UPL	ASTERACEAE	
ASTTUR	7	Aster turbinellus	PRAIRIE ASTER	P.FORB	5	UPL	ASTERACEAE	
ASTUMB	8	Aster umbellatus	FLAT-TOP ASTER	P-FORB	-3	FACW	ASTERACEAE	
ASTUND	9	Aster undulatus	WAVY-LEAVED ASTER	P-FORB	5	UPL	ASTERACEAE	

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
ASTVIM	3	Aster vimineus	SMALL WHITE ASTER	P-FORB	-2	FACW-	ASTERACEAE
ASTAGR	-	ASTRAGALUS AGRESTIS	FIELD MILK VETCH	P-FORB	-2	FACW-	FABACEAE
ASTCAN	7	Astragalus canadensis	CANADIAN MILK VETCH	P-FORB	-1	$\mathrm{FAC}+$	FABACEAE
ASTCRA	B	Astragalus crassicarpus v. trichocalyx	LARGE GROUND PLUM	P-FORB	5	UPL	FABACEAE
ASTDIS	8	Astragalus distortus	BENT MILK VETCH	P-FORB	5	UPL	FABACEAE
ASTTEN	10	Astragalus tennesseensis	TENNESSEE MILK VETCH	P-FORB	5	UPL	FABACEAE
ATHANG	6	Athyrium angustum	LADY FERN	FERN	0	FAC	ASPLENIACEAE
ATHASP	6	Athyrium asplenioides	SOUTHERN LADY FERN	FERN	0	FAC	ASPLENIACEAE
ATHPYC	10	Athyrium pycnocarpon	GLADE FERN	FERN	1	FAC-	ASPLENIACEAE
ATHTHE	10	Athyrium thelypterioides	SILVERY SPLEENWORT	FERN	0	FAC	ASPLENIACEAE
ATRARG	*	ATRIPLEX ARGENTEA	SILVER ORACH	A.FORB	0	FAC	CHENOPODIACEAE
ATRGLA	*	ATRIPLEX GLABRIUSCULA	SMOOTH ORACH	A-FORB	5	UPL	CHENOPODIACEAE
ATRHOR	*	ATRIPLEX HORTENSIS	GARDEN ORACH	A-FORB	0	FAC	CHENOPODIACEAE
ATRPAT	-	ATRIPLEX PATULA	FAT-HEN SALTBUSH	A-FORB	2	$\mathrm{FACU}+$	CHENOPODIACEAE
ATRROS	*	ATRIPLEX ROSEA	RED ORACHE	A-FORB	2	$\mathrm{FACU}+$	CHENOPODIACEAE
AURFLA	8	Aureolaria flava	SMOOTH FALSE FOXGLOVE	P-FORB	5	UPL	SCROPHULARIACEAE
AURGRA	6	Aureolaria grandiflora v. pulchra	YELLOW FALSE FOXGLOVE	P-FORB	5	UPL	SCROPHULARIACEAE
AURPED	9	Aureolaria pedicularia v. ambigens	CLAMMY FALSE FOXGLOVE	A-FORB	5	UPL	SCROPHULARIACEAE
AVEFAT	*	AVENA FATUA	WILD OATS	A-GRASS	5	UPL	POACEAE
AVESAT	*	AVENA SATIVA	OATS	A-GRASS	5	UPL	POACEAE
AZOMEX	8	Azolla mexicana	MEXICAN AZOLLA	FERN	-5	OBL	SALVINIACEAE
BACROT	5	Bacopa rotundifolia	WATER HYSSOP	P-FORB	-5	OBL	SCROPHULARIACEAE
BALNIG	*	BALLOTA NIGRA	BLACK HOREHOUND	P-FORB	5	UPL	LAMIACEAE
BALMAJ	*	BALSAMITA MAJOR	COSTMARY	P-FORB	5	UPL	ASTERACEAE
BAPAUA	*	BAPTISIA AUSTRALIS	BLUE WILD INDIGO	P-FORB	5	UPL	FABACEAE
BAPAUM	*	BAPTISIA AUSTRALIS v. MINOR	BLUE WILD INDIGO	P-FORB	5	UPL	FABACEAE
BAPLAC	6	Baptisia lactea	WHITE WILD INDIGO	P-FORB	3	FACU	FABACEAE
BAPLEL	g	Baptisia leucophaea	CREAM WILD INDIGO	P-FORB	5	UPL	FABACEAE
BAPLEG	9	Baptisia leucophaea v. glabrescens	CREAM WILD INDIGO	P-FORB	5	UPL	FABACEAE
BAPTIN	10	Baptisia tinctoria v. crebra	YELLOW WILD INDIGO	P-FORB	5	UPL	FABACEAE
BARVER	*	BARBAREA VERNA	EARLY WINTER CRESS	B-FORB	5	UPL	BRASSICACEAE
BARVUL	*	BARBAREA VULGARIS	WINTER CRESS	B-FORB	0	FAC	BRASSICACEAE
BARPAN	10	Bartonia paniculata	SCREWSTEM	A-FORB	-5	OBL	GENTIANACEAE
BARVIR	10	Bartonia virginica	YELLOW BARTONIA	A-FORB	-4	FACW +	GENTIANACEAE
BECSYZ	10	Beckmannia syzigachne	AMERICAN SLOUGH GRASS	A-GRASS	-5	OBL	POACEAE
BELCHI	*	BELAMCANDA CHINENSIS	BLACKBERRY LILLY	P-FORB	5	UPL	IRIDACEAE
BELPER	*	BELLIS PERENNIS	ENGLISH DAISY	P-FORB	5	UPL	ASTERACEAE
BERCAN	10	Berberis canadensis	ALLEGHENY BARBERRY	SHRUB	5	UPL	BERBERIDACEAE
BERTHU	*	BERBERIS THUNBERGII	JAPANESE BARBERRY	SHRUB	4	FACU.	BERBERIDACEAE
BERVUL	*	BERBERIS VULGARIS	COMMON BARBERRY	SHRUB	3	FACU	BERBERIDACEAE
BERSCA	5	Berchemia scandens	SUPPLE-JACK	W-VINE	-1	$\mathrm{FAC}+$	RHAMNACEAE
BERTEX	10	Bergia texana	BERGIA	A-FORB	-5	OBL	ELATINACEAE
BERINC	*	BERTEROA INCANA	HOARY ALYSSUM	A-FORB	5	UPL	BRASSICACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Femily
BERERE	10	Berula erecta	WATER PARSNIP	P-FORB	- 5	OBL	APIACEAE
BESBUL	8	Besseya bullii	KITTEN TAILS	P-FORB	5	UPL	SCROPHULARIACEAE
BETALL	10	Betula alleghaniensis	YELLOW BIRCH	TREE	0	FAC	BETULACEAE
BETNIG	4	Betula nigra	RIVER BIRCH	TREE	- 3	FACW	BETULACEAE
BETPAP	7	Betula papyrifera	PAPER BIRCH	TREE	2	FACU +	BETULACEAE
BETPEN	-	BETULA PENDULA	EUROPEAN WHITE BIRCH	TREE	2	FACU +	BETULACEAE
BETPOP	*	BETULA POPULIFOLIA	GRAY BIRCH	TREE	0	FAC	BETULACEAE
BETPUM	10	Betula pumila	DWARF BIRCH	Shrub	-5	OBL	BETULACEAE
BIDARA	1	Bidens aristosa	SWAMP MARIGOLD	A.FORB	-3	FACW	ASTERACEAE
BIDARR	1	Bidens aristosa v. retrorsa	BUR MARIGOLD	A.FORB	-3	FACW	ASTERACEAE
BIDBIP	*	BIDENS BIPINNATA	SPANISH NEEDLES	A-FORB	-2	FACW-	AStERACEAE
BIDCER	2	Bidens cernua	NODDING BUR MARIGOLD	A-FORB	-5	OBL	AStERACEAE
BIDCON	2	Bidens connata	PURPLESTEMMED TICKSEED	A-FORB	-5	OBL	ASTERACEAE
BIDCOR	7	Bidens coronata	TALL SWAMP MARIGOLD	A-FORB	-5	OBL	ASTERACEAE
BIDDIS	6	Bidens discoidea	SWAMP BEGGAR'S TICKS	A-FORB	-3	FACW	ASTERACEAE
BIDFRO	1	Bidens frondosa	COMMON BEGGAR'S TICKS	A-FORB	- 3	FACW	ASTERACEAE
BIDTRI	2	Bidens tripartita	SWAMP TICKSEED	A-FORB	-5	OBL	ASTERACEAE
BIDVUL	0	Bidens vulgata	TALL BEGGAR'S TICKS	A-FORB	-3	FACW	ASTERACEAE
BIGCAP	B	Bignonia capreolata	CROSS VINE	W-VINE	- 3	FACW	BIGNONIACEAE
BLECIL	6	Blephilia ciliata	OHIO HORSE MINT	P-FORB	5	UPL	LAMIACEAE
BLEHIR	5	Blephilia hirsuta	WOOD MINT	P-FORB	4	FACU-	LAMIACEAE
BOECYC	3	Boehmeria cylindrica	FALSE NETTLE	P-FORB	- 5	OBL	URTICACEAE
BOECYD	3	Boehmeria cylindrica v. drummondiana	ROUGH FALSE NETTLE	P-FORB	-5	OBL	URTICACEAE
BOLAST	5	Boltonia asteroides	FALSE ASTER	P-FORB	- 3	FACW	ASTERACEAE
BOLDEC	4	Boltonia decurrens	ILLINOIS FALSE ASTER	P-FORB	-5	OBL	ASTERACEAE
BOLDIF	4	Boltonia diffusa	FALSE ASTER	P-FORB	-3	FACW	ASTERACEAE
BOROFF	-	BDRAGO OFFICINALIS	BORAGE	A-FORB	5	UPL	BORAGINACEAE
BOTSAC	-	BOTHRIOCHLOA SACCHAROIDES	SILVER BEARDGRASS	P-GRASS	5	UPL	POACEAE
BOTBIT	7	Botrychium biternatum	SOUTHERN GRAPE FERN	FERN	1	FAC.	OPHIOGLOSSACEAE
BOTDID	6	Botrychium dissectum	BRONZE FERN	FERN	0	FAC	OPHIOGLOSSACEAE
BOTDIO	4	Botrychium dissectum v. obliquum	BRONZE FERN	FERN	0	FAC	OPHIOGLOSSACEAE
BOTMAT	10	Botrychium matricariaefolium	DAISY-LEAF GRAPE FERN	FERN	3	FACU	OPHIOGLOSSACEAE
BOTMUL	10	Botrychium multifidum	NORTHERN GRAPE FERN	FERN	3	FACU	OPHIOGLOSSACEAE
BOTONE	10	Botrychium oneidense	ONEIDA GRAPE FERN	FERN	5	UPL	OPHIOGLOSSACEAE
BOTSIM	4	Botrychium simplex	DWARF GRAPE FERN	FERN	0	FAC	OPHIOGLOSSACEAE
BOTVIR	4	Botrychium virginianum	RATTLESNAKE FERN	FERN	3	FACU	OPHIOGLOSSACEAE
BOUCUR	7	Bouteloua curtipendula	SIDE-OATS GRAMA	P-GRASS	5	UPL	POACEAE
BOUGRA	5	Bouteloua gracilis	BLUE GRAMA	P-GRASS	5	UPL	POACEAE
BOUHIR	9	Bouteloua hirsuta	HAIRY GRAMA	P-GRASS	5	UPL	POACEAE
BRAERE	7	Brachyelytrum erectum	LONG-AWNED WOOD GRASS	P-GRASS	5	UPL	POACEAE
BRASCH	7	Brasenia schreberi	WATERSHIELD	P-FORB	-5	OBL	CABOMBACEAE
BRAHIR	*	BRASSICA HIRTA	WHITE MUSTARD	A-FORB	5	UPL	BRASSICACEAE
BRAJUN	*	BRASSICA JUNCEA	INDIAN MUSTARD	A-FORB	5	UPL	BRASSICACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
BRAKAB	0	Brassica kaber	CHARLOCK	A-FORB	5	UPL	BRASSICACEAE
BRANAP	*	BRASSICA NAPUS	TURNIP	A-FORB	5	UPL	BRASSICACEAE
BRANIG	*	BRASSICA NIGRA	BLACK MUSTARD	A.FORB	5	UPL	BRASSICACEAE
braole	*	BRASSICA OLERACEA	MUSTARD	A-FORB	5	UPL	BRASSICACEAE
BRARAP	*	BRASSICA RAPA	BIRD'S RAPE	A-FORB	5	UPL	BRASSICACEAE
BRIEUP	6	Brickellia eupatorioides	FALSE BONESET	P-FORB	5	UPL	ASTERACEAE
BRIMAX	*	BRIZA MAXIMA	BIG QUAKING GRASS	A-GRASS	5	UPL	POACEAE
BROARV	*	BROMUS ARVENSIS	CHESS	P-GRASS	5	UPL	POACEAE
BROBRI	*	BROMUS BRIZAEFORMIS	RATTLESNAKE CHESS	A-GRASS	5	UPL	POACEAE
BROCAR	*	BROMUS CARINATUS	CALIFORNIA BROME	P-GRASS	5	UPL	POACEAE
BROCAT	*	BROMUS CATHARTICUS	RESCUE GRASS	A-GRASS	5	UPL	POACEAE
BROCIL	10	Bromus ciliatus	FRINGED BROME	P-GRASS	-5	OBL	POACEAE
BROCOM	*	BROMUS COMMUTATUS	HAIRY BROME	A-GRASS	5	UPL	POACEAE
broere	*	BROMUS ERECTUS	ERECT BROME GRASS	P-GRASS	5	UPL	POACEAE
BROHOR	-	BROMUS HORDEACEUS	SOFT CHESS	A-GRASS	5	UPL	POACEAE
BROINE	-	BROMUS INERMIS	HUNGARIAN BROME	P-GRASS	5	UPL	POACEAE
BROJAP	*	BROMUS JAPONICUS	JAPANESE CHESS	A-GRASS	3	FACU	POACEAE
BROKAL	10	Bromus kalmii	PRAIRIE BROME	P-GRASS	0	FAC	POACEAE
BROMAR	*	BROMUS MARGINATUS	MOUNTAIN BROME	P-GRASS	5	UPL	POACEAE
BRONOT	10	Bromus nottowayanus	WOODLAND BROME	P-GRASS	3	FACU	POACEAE
BROPUB	5	Bromus pubescens	WOODLAND BROME	P-GRASS	2	FACU +	POACEAE
BROPUR	7	Bromus purgans	EAR-LEAVED BROME	P-GRASS	-2	FACW.	POACEAE
BRORAC	-	BROMUS RACEMOSUS	SMOOTH CHESS	A-GRASS	5	UPL	POACEAE
BROSEC	*	BROMUS SECALINUS	CHEAT GRASS	A-GRASS	5	UPL	POACEAE
Brosau	*	BROMUS SQUARROSUS	NODDING BROME	A-GRASS	5	UPL	POACEAE
bROSTE	*	BROMUS STERILIS	POVERTY BROME	A-GRASS	5	UPL	POACEAE
BROTEC	*	BROMUS TECTORUM	CHEAT GRASS	A-GRASS	5	UPL	POACEAE
BROPAP	*	BROUSSONETIA PAPYRIFERA	PAPER MULBERRY	TREE	5	UPL	MORACEAE
BRUOVA	7	Brunnichia ovata	BUCKWHEAT VINE	W-VINE	-3	FACW	POLYGONACEAE
BUCDAC	-	BUCHLOE DACTYLOIDES	BUFFALO GRASS	P-GRASS	4	FACU-	POACEAE
BUCAME	10	Buchnera americana	BLUE HEARTS	P-FORB	1	FAC-	SCROPHULARIACEAE
BUGARV	*	BUGLOSSOIDES ARVENSE	CORN GROMWELL	A-FORB	5	UPL	BORAGINACEAE
BULCAP	4	Bulbostylis capillaris	HAIR SEDGE	A-SEDGE	2	FACU +	CYPERACEAE
BUMLAN	10	Bumelia lanuginosa	CHITTAM WOOD	tree	3	FACU	SAPOTACEAE
BUMLYC	10	Bumelia lycioides	SOUTHERN BUCKTHORN	SHRUB	-3	FACW	SAPOTACEAE
BUPROT	*	BUPLEURUM ROTUNDIFOLIUM	THOROUGHWAX	A-FORB	5	UPL	APIACEAE
BUTUMB	*	BUTOMUS UMBELLATUS	FLOWERING RUSH	P-FORB	-5	OBL	BUTOMACEAE
CABCAR	8	Cabomba caroliniana	CABOMBA	P-FORB	-5	OBL	CABOMBACEAE
CACATR	5	Cacalia atriplicifolia	PALE INDIAN PLANTAIN	P-FORB	5	UPL	ASTERACEAE
CACMUH	10	Cacalia muhlenbergii	GREAT INDIAN PLANTAIN	P-FORB	5	UPL	ASTERACEAE
CACPLA	10	Cacalia plantaginea	PRAIRIE INDIAN PLANTAIN	P-FORB	0	FAC	ASTERACEAE
CACSUA	10	Cacalia suaveolens	SWEET INDIAN PLANTAIN	P-FORB	-5	OBL	ASTERACEAE
CAKLAC	9	Cakile edentula v. lacustris	SEA ROCKET	A-FORB	3	FACU	BRASSICACEAE

APPM:NIDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
CALCAN	3	Calamagrostis canadensis	BLUE JOINT GRASS	P-GRASS	-5	OBL	POACEAE
CALEPI	*	CALAMAGROSTIS EPIGEIOS	FEATHERTOP	P-GRASS	-5	OBL	POACEAE
CALINE	5	Calamagrostis inexpansa v. brevior	BOG REED GRASS	P-GRASS	. 4	FACW +	POACEAE
CALNEG	*	CALAMAGROSTIS NEGLECTA	REED-BENT GRASS	P-GRASS	. 4	FACW +	POACEAE
CALARK	8	Calamintha arkansana	LOW CALAMINT	P-FORB	-3	FACW	LAMIACEAE
CALLON	8	Calamovilfa longifolia	SAND REED	P-GRASS	5	UPL	POACEAE
CALLPA	10	Calla palustris	WATER ARUM	P-FORB	- 5	OBL	ARACEAE
CALALC	5	Callirhoe alcaeoides	PALE POPPY MALLOW	P-FORB	5	UPL	MALVACEAE
CALDIG	*	CALLIRHOE DIGITATA	POPPY MALLOW	P-FORB	5	UPL	MALVACEAE
CALINV	-	CALLIRHOE INVOLUCRATA	PURPLE POPPY MALLOW	P-FORB	5	UPL	MALVACEAE
CALTRI	9	Callirhoe triangulata	CLUSTERED POPPY MALLOW	P-FORB	5	UPL	MALVACEAE
CALHET	5	Callitriche heterophylla	LARGE WATER STARWORT	A-FORB	-5	OBL	CALLITRICHACEAE
CALTER	2	Callitriche terrestris	TERRESTRIAL STARWORT	A-FORB	3	FACU	CALLITRICHACEAE
CALVER	5	Callitriche verna	COMMON WATER STARWORT	P-FORB	-5	OBL	CALLITRICHACEAE
CALTUB	10	Calopogon tuberosus	GRASS PINK ORCHID	P-FORB	-5	OBL	ORCHIDACEAE
CALTPA	7	Caltha palustris	COWSLIP	P-FORB	-5	OBL	RANUNCULACEAE
CALFLO	*	CALYCANTHUS FLORIDUS	STRAWBERRY-SHRUB	SHRUB	5	UPL	CALYCANTHACEAE
CALLYO	7	Calycocarpum Iyonii	CUPSEED	W-VINE	-3	FACW	MENISPERMACEAE
CALSER	-	CALYLOPHUS SERRULATUS	TOOTHED EVENING PRIMROSE	SHRUB	5	UPL	ONAGRACEAE
CALPUB	*	CALYSTEGIA PUBESCENS	CALIFORNIA ROSE	P-FORB	5	UPL	CONVOLVULACEAE
CALSEP	1	Calystegia sepium	AMERICAN BINDWEED	P-FORB	0	FAC	CONVOLVULACEAE
CALSPI	10	Calystegia spithamaea	DWARF BINDWEED	P-FORB	5	UPL	CONVOLVULACEAE
CAMANG	7	Camassia angusta	WILD HYACINTH	P-FORB	5	UPL	LILIACEAE
CAMSCI	7	Camassia scilloides	WILD HYACINTH	P-FORB	-1	FAC +	LILIACEAE
CAMMIC	-	CAMELINA MICROCARPA	SMALL-FRUITED FALSE FLAX	A.FORB	5	UPL	BRASSICACEAE
CAMSAT	-	CAMELINA SATIVA	FALSE FLAX	A-FORB	5	UPL	BRASSICACEAE
CAMAME	4	Campanula americana	AMERICAN BELLFLOWER	A-FORB	0	FAC	CAMPANULACEAE
CAMAPA	8	Campanula aparinoides	MARSH BELLFLOWER	P-FORB	-5	OBL	CAMPANULACEAE
CAMGLO	-	CAMPANULA GLOMERATA	CLUSTERED BELLFLOWER	P-FORB	5	UPL	CAMPANULACEAE
CAMRAP	-	CAMPANULA RAPUNCULOIDES	EUROPEAN BELLFLOWER	P-FORB	5	UPL	CAMPANULACEAE
CAMROT	8	Campanula rotundifolia	HAREBELL	P-FORB	1	FAC-	CAMPANULACEAE
CAMULI	10	Campanula uliginosa	MARSH BELLFLOWER	P-FORB	-5	OBL	CAMPANULACEAE
CAMRAD	2	Campsis radicans	TRUMPET CREEPER	W-VINE	0	FAC	BIGNONIACEAE
CANENS	*	CANAVALIA ENSIFORMIS	JACK BEAN	A-FORB	5	UPL	FABACEAE
CANSAT	*	CANNABIS SATIVA	HASHISH	A-FORB	0	FAC	MORACEAE
CAPBUR	*	CAPSELLA BURSA-PASTORIS	SHEPHERD'S PURSE	A-FORB	1	FAC.	BRASSICACEAE
CARARB	*	CARAGANA ARBORESCENS	PEA TREE	SHRUB	5	UPL	FABACEAE
CARBUL	5	Cardamine bulbosa	BULB BITTERCRESS	P-FORB	-5	OBL	BRASSICACEAE
CARDOU	6	Cardamine douglassii	NORTHERN BITTER CRESS	P-FORB	-3	FACW	BRASSICACEAE
CARHIR	*	CARDAMINE HIRSUTA	HAIRY BITTER CRESS	A-FORB	3	FACU	BRASSICACEAE
CARPAR	2	Cardamine parviflora v. arenicola	SMALL-FLOWERED BITTER CRESS	A-FORB	0	FAC	BRASSICACEAE
CARPEN	3	Cardamine pensylvanica	BITTER CRESS	B-FORB	-4	FACW +	BRASSICACEAE
CARPRA	10	Cardamine pratensis v. palustris	CUCKOO FLOWER	P-FORB	. 5	OBL	BRASSICACEAE

Physiognomy	W	Wet	Family
P-FORB	5	UPL	BRASSICACEAE
A-FORB	0	FAC	SAPINDACEAE
B-FORB	5	UPL	ASTERACEAE
B-FORB	5	UPL	ASTERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	-1	FAC +	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	3	FACU	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	1	FAC-	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	2	FACU +	CYPERACEAE
P-SEDGE	3	FACU	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-1	FAC +	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	4	FACU-	CYPERACEAE
P-SEDGE	-1	FAC +	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE

Common Name
HOARY CRESS
LOVE-IN-A-PUSS
ACANTHUS BRISTLE THISTLE
MUSK BRISTLE THISTLE
SMOOTH CLUSTERED SEDGE
WINGED OVAL SEDGE
LONG-FRUITED OVAL SEDGE
BLUNT-SCALED WOOD SEDGE
BROWN-HEADED FOX SEDGE
GRAY SEDGE
LARGE YELLOW FOX SEDGE
SMALL YELLOW FOX SEDGE
ARKANSAS SEDGE
BLUNT-SCALED OAK SEDGE
HAIRY-LEAVED LAKE SEDGE
GOLDEN SEDGE
BEBB'S OVAL SEDGE
BICKNELL'S SEDGE
COMMON WOOD SEDGE
PLAINS OVAL SEDGE
BROME HUMMOCK SEDGE
GREEN BOG SEDGE
LONG-SCALED GREEN SEDGE
DARK-SCALED SEDGE
GRAY BOG SEDGE
CAREY'S WOOD SEDGE
SHORT-SCALED GREEN SEDGE
ROUGH CLUSTERED SEDGE
SHORT-HEADED BRACTED SEDGE
CORDROOT SEDGE
COMMON BEECH SEDGE
BRISTLY SEDGE
GREEN-HEADED FOX SEDGE
PRAIRIE GRAY SEDGE
EARLY FEN SEDGE
CRAWFORD'S OVAL SEDGE
FRINGED SEDGE
CRESTED OVAL SEDGE
CROWFOOT FOX SEDGE
SMALL YELLOW SEDGE
CROWDED OVAL SEDGE
AWNED GRACEFUL SEDGE
WEAK SEDGE
WG

Physiognomy	W	Wet	Family
P-SEDGE	- 5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	4	FACU-	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	3	FACU	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	4	FACU-	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-4	FACW +	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	-5	OBL	CYPERACEAE

Common Name
BROAD-LEAVED PANICLED SEDGE
BOG PANICLED SEDGE
NARROW-LEAVED WOOD SEDGE
TWO-SEEDED SEDGE
IVORY SEDGE
LARGE-FRUITED STAR SEDGE
SHARP-SCALED OAK SEDGE
RIVERBANK SEDGE
FESCUE OVAL SEDGE
PALE GRAY SEDGE
RUNNING SAVANNA SEDGE
AWNLESS GRACEFUL SEDGE
BRISTLY CATTAIL SEDGE
FALSE GOLDEN SEDGE
GREATER HOP SEDGE
BLUE SEDGE
SLENDER WOOD SEDGE
PURPLE-SHEATHED
PALE SEDGE
PALE SEDGE
LONG-AWNED BRACTED SEDGE
LONG-AWNED BRACTED SEDGE
COMMON BUR SEDGE
WOOD GRAY SEDGE
LONG-SCALED TUSSOCK SEDGE
HAIRY GREEN SEDGE
HAIRY WOOD SEDGE
HAIRY GRAY SEDGE
SOUTHERN LAKE SEDGE
PORCUPINE SEDGE
ATLANTIC STAR SEDGE
PRAIRIE STAR SEDGE
SHINING BUR SEDGE
GRASS SEDGE
COMMON LAKE SEDGE
LONG-TOOTHED LAKE SEDGE
SMOOTH-SHEATHED LAKE SEDGE
WOOLY SEDGE
NARROW-LEAVED WOOLLY SEDGE
WEAK-STEMMED WOOD SEDGE
BEECH WOOD SEDGE
DWARF BRACTED SEDGE
SLENDER SEDGE

Acronym	CC	Scientific Name
CXDECO	10	Carex decomposita
CXDIAN	10	Carex diandra
CXDIGI	B	Carex digitalis
CXDISP	10	Carex disperma
CXEBUR	9	Carex eburnea
CXECHI	10	Carex echinata
CXEMMO	10	Carex emmonsii
CXEMOR	6	Carex emoryi
CXFEST	6	Carex festucacea
CXFLAC	10	Carex flaccosperma
CXFOEN	7	Carex foenea
CXFORM	10	Carex formosa
CXFRAN	4	Carex frankii
CXGARB	10	Carex garberi
CXGIGA	10	Carex gigantea
CXGLAU	5	Carex glaucodea
CXGRAS	7	Carex gracilescens
CXGRAM	9	Carex gracillima
CXGRNG	2	Carex granularis
CXGRAH	2	Carex granularis v. haleana
CXGRVG	4	Carex gravida
CXGRAL	4	Carex gravida v. lunelliana
CXGRAY	6	Carex grayi
CXGRIS	3	Carex grisea
CXHAYD	7	Carex haydenii
CXHIRS	5	Carex hirsutella
CXHIRT	6	Carex hirtifolia
CXHITC	10	Carex hitchcockiana
CXHYAL	4	Carex hyalinolepis
CXHYST	6	Carex hystericina
CXINCO	10	Carex incomperta
CXINTE	8	Carex interior
CXINTU	9	Carex intumescens
CXJAME	4	Carex jamesii
CXLACU	6	Carex lacustris
CXLAEC	10	Carex laeviconica
CXLAEG	7	Carex laevivaginata
CXLANU	4	Carex lanuginosa
CXLASI	10	Carex lasiocarpa
CXLAXC	B	Carex laxiculmis
CXLAXF	10	Carex laxiflora
CXLEAV	2	Carex leavenworthii
CXLEPT	10	Carex leptalea

Acronym		Scientific Name	Common Name
CXLIMO	10	Carex limosa	MUCK SEDGE
CXLONG	8	Carex longii	ROUND-SHOULDERED OVAL SEDGE
CXLOUI	9	Carex louisianica	SOUTHERN HOP SEDGE
CXLUPF	5	Carex lupuliformis	KNOBBED HOP SEDGE
CXLUPN	5	Carex lupulina	COMMON HOP SEDGE
CXLURI	7	Carex lurida	BOTTLEBRUSH SEDGE
CXMEAD	6	Carex meadii	MEAD'S STIFF SEDGE
CXMOLE	2	Carex molesta	FIELD OVAL SEDGE
CXMUHM	5	Carex muhlenbergii	SAND BRACTED SEDGE
CXMUHE	5	Carex muhlenbergii v. enervis	SAND BRACTED SEDGE
CXMUSK	6	Carex muskingumensis	SWAMP OVAL SEDGE
CXNEBR	*	CAREX NEBRASKENSIS	PLAINS TUSSOCK SEDGE
CXNIGR	10	Carex nigromarginata	DARK BRACTED OAK SEDGE
CXNORM	4	Carex normalis	SPREADING OVAL SEDGE
CXOLIC	5	Carex oligocarpa	FEW-FRUITED GRAY SEDGE
CXOLIS	10	Carex oligosperma	RUNNING BOG SEDGE
CXOXYL	10	Carex oxylepis	SHORT-STALKED GRACEFUL SEDGE
CXPALL	10	Carex pallescens	PALE GREEN SEDGE
CXPEDU	10	Carex pedunculata	LONG-STALKED HUMMOCK SEDGE
CXPENP	5	Carex pensylvanica	PENNSYLVANIA OAK SEDGE
CXPEND	5	Carex pensylvanica v. distans	PENNSYLVANIA OAK SEDGE
CXPHYS	10	Carex physorhyncha	SLENDER OAK SEDGE
CXPLAN	10	Carex plantaginea	PLANTAIN-LEAVED WOOD SEDGE
CXPLAT	10	Carex platyphylla	BROAD-LEAVED WOOD SEDGE
CXPRAE	*	CAREX PRAEGRACILIS	EXPRESSWAY SEDGE
CXPRAI	10	Carex prairea	FEN PANICLED SEDGE
CXPRAS	10	Carex prasina	LEEK SEDGE
CXPRAT	-	CAREX PRATICOLA	LARGE-FRUITED OVAL SEDGE
CXPROJ	4	Carex projecta	LOOSE-HEADED OVAL SEDGE
CXRADI	5	Carex radiata	STRAIGHT-STYLED WOOD SEDGE
CXRENI	10	Carex reniformis	GREATER OVAL SEDGE
CXRETF	5	Carex retroflexa	BENT BRACTED SEDGE
CXRETS	7	Carex retrorsa	DEFLEXED BOTTLEBRUSH SEDGE
CXRICS	10	Carex richardsonii	PRAIRIE HUMMOCK SEDGE
CXRICI	10	Carex richii	AWNED OVAL SEDGE
CXROSE	5	Carex rosea	CURLY-STYLED WOOD SEDGE
CXSART	5	Carex sartwellii	RUNNING MARSH SEDGE
CXSCOP	5	Carex scoparia	LANCE-FRUITED OVAL SEDGE
CXSHOR	4	Carex shortiana	SHORT'S SEDGE
CXSOCI	10	Carex socialis	CREEPING WOOD SEDGE
CXSPAR	4	Carex sparganioides	LOOSE-HEADED BRACTED SEDGE
CXSPIC	*	CAREX SPICATA	SPIKED BRACTED SEDGE
CXSPRE	8	Carex sprengelii	LONG-BEAKED SEDGE

Acronym	CC	Scientiflc Name	Common Name	Physiognomy	W	Wet	Family
CXSQUA	5	Carex squarrosa	NARROW-LEAVED CATTAIL SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXSTEN	-	CAREX STENOPHYLLA V. ENERVIS	SPIKERUSH SEDGE	P-SEDGE	5	UPL	CYPERACEAE
CXSTER	10	Carex sterilis	FEN STAR SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXSTIP	2	Carex stipata	COMMON FOX SEDGE	P.SEDGE	-5	OBL	CYPERACEAE
CXSTRT	10	Carex striatula	SOUTHERN WOOD SEDGE	P-SEDGE	5	UPL	CYPERACEAE
CXSTRC	5	Carex stricta	COMMON TUSSOCK SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
cxsube	7	Carex suberecta	WEDGE-FRUITED OVAL SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXSUBI	5	Carex \times subimpressa	HYBRID LAKE SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXSUBS	6	Carex substricta	LONG-BRACTED TUSSOCK SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXSWAN	8	Carex swanii	DOWNY GREEN SEDGE	P.SEDGE	3	FACU	CYPERACEAE
CXTENE	5	Carex tenera	NARROW-LEAVED OVAL SEDGE	P-SEDGE	-1	FAC +	CYPERACEAE
CXTETA	5	Carex tetanica	COMMON STIFF SEDGE	P-SEDGE	-3	FACW	CYPERACEAE
CXTEXE	6	Carex texensis	TEXAS BRACTED SEDGE	P.SEDGE	5	UPL	CYPERACEAE
CXTONS	8	Carex tonsa	SMOOTH-FRUITED OAK SEDGE	P-SEDGE	5	UPL	CYPERACEAE
CXTORT	8	Carex torta	BEAKED RIVERBANK SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXTRIB	3	Carex tribuloides	AWL-FRUITED OVAL SEDGE	P-SEDGE	-4	FACW +	CYPERACEAE
CXTRIC	6	Carex trichocarpa	HAIRY-FRUITED LAKE SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXTRIS	10	Carex trisperma	THREE-SEEDED BOG SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXTUCK	10	Carex tuckermanii	BENT-SEEDED HOP SEDGE	P-SEDGE	- 5	OBL	CYPERACEAE
CXTYPH	6	Carex typhina	COMMON CATTAIL SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXUMBE	6	Carex umbellata	EARLY OAK SEDGE	P-SEDGE	5	UPL	CYPERACEAE
CXUTRI	9	Carex utriculata	COMMON YELLOW LAKE SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXVESI	9	Carex vesicaria	TUFTED LAKE SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXVIRE	10	Carex virescens	SLENDER GREEN SEDGE	P-SEDGE	3	FACU	CYPERACEAE
CXVIRI	9	Carex viridula	GREEN YELLOW SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXVULP	3	Carex vulpinoidea	BROWN FOX SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
CXWILL	9	Carex willdenowii	WILLDENOW'S GRASS SEDGE	P-SEDGE	5	UPL	CYPERACEAE
CXWOOD	10	Carex woodii	WOOD'S STIFF SEDGE	P-SEDGE	0	FAC	CYPERACEAE
CARCAL	6	Carpinus caroliniana	BLUE BEECH	TREE	0	FAC	CORYLACEAE
CARTIN	-	CARTHAMUS TINCTORIUS	SAFFLOWER	A-FORB	5	UPL	ASTERACEAE
CARCAV	*	CARUM CARVI	CARAWAY	B-FORB	5	UPL	APIACEAE
CARAQU	10	Carya aquatica	WATER HICKORY	TREE	-5	OBL	JUGLANDACEAE
CARCOR	4	Carya cordiformis	BITTERNUT HICKORY	TREE	0	FAC	JUGLANDACEAE
CARGLA	5	Carya glabra	PIGNUT HICKORY	TREE	3	FACU	JUGLANDACEAE
CARILL	6	Carya illinoensis	PECAN	TREE	-3	FACW	JUGLANDACEAE
CARLAC	7	Carya laciniosa	BIG SHELLBARK	TREE	-3	FACW	JUGLANDACEAE
CAROVL	5	Carya ovalis	FALSE SHAGBARK HICKORY	TREE	5	UPL	JUGLANDACEAE
CAROVT	4	Carya ovata	SHAGBARK HICKORY	TREE	3	FACU	JUGLANDACEAE
CARPAL	10	Carya pallida	PALE HICKORY	TREE	5	UPL	JUGLANDACEAE
CARTEX	8	Carya texana	BLACK HICKORY	TREE	5	UPL	JUGLANDACEAE
CARTOM	6	Carya tomentosa	MOCKERNUT HICKORY	TREE	5	UPL	JUGLANDACEAE
CASFAS	1	Cassia fasciculata	GOLDEN CASSIA	A-FORB	4	FACU-	CAESALPINIACEAE

Common Name	Physiognomy	W	Wet	Family
WILD SENNA	P-FORB	-3	FACW	CAESALPINIACEAE
MARYLAND SENNA	P-FORB	-3	FACW	CAESALPINIACEAE
WILD SENSITIVE PLANT	A-FORB	4	FACU-	CAESALPINIACEAE
SICKLEPOD	A-FORB	5	UPL	CAESALPINIACEAE
COFFEE SENNA	A-FORB	5	UPL	CAESALPINIACEAE
AMERICAN CHESTNUT	TREE	5	UPL	FAGACEAE
CHINESE CHESTNUT	TREE	5	UPL	FAGACEAE
INDIAN PAINTBRUSH	A-FORB	0	FAC	SCROPHULARIACEAE
DOWNY YELLOW PAINTED CUP	P-FORB	5	UPL	SCROPHULARIACEAE
COMMON CATALPA	TREE	3	FACU	BIGNONIACEAE
CIGAR TREE	TREE	3	FACU	BIGNONIACEAE
blUe COHOSH	P-FORB	5	UPL	BERBERIDACEAE
NEW JERSEY TEA	SHRUB	5	UPL	RHAMNACEAE
INLAND NEW JERSEY TEA	SHRUB	5	UPL	RHAMNACEAE
ORIENTAL BITTERSWEET	W-VINE	5	UPL	CELASTRACEAE
CLIMBING BITTERSWEET	W-VINE	3	FACU	CELASTRACEAE
SUGARBERRY	TREE	-3	FACW	ULMACEAE
HACKBERRY	TREE	1	FAC-	ULMACEAE
DWARF HACKBERRY	SHRUB	5	UPL	ULMACEAE
MAT SANDBUR	A-GRASS	5	UPL	POACEAE
AMERICAN BASKET FLOWER	A-FORB	5	UPL	ASTERACEAE
PURPLE STAR THISTLE	A-FORB	5	UPL	ASTERACEAE
BACHELOR'S BUTTON	A-FORB	5	UPL	ASTERACEAE
SPREADING STAR THISTLE	A-FORB	5	UPL	ASTERACEAE
TYROL KNAPWEED	P-FORB	5	UPL	ASTERACEAE
BROWN KNAPWEED	P-FORB	5	UPL	ASTERACEAE
SPOTTED CENTAUREA	B-FORB	5	UPL	ASTERACEAE
SWEET SULTAN	A-FORB	5	UPL	ASTERACEAE
BLACK KNAPWEED	P-FORB	5	UPL	ASTERACEAE
RUSSIAN KNAPWEED	P-FORB	5	UPL	ASTERACEAE
BARNABY'S THISTLE	A-FORB	5	UPL	ASTERACEAE
SHOWY CENTAURY	A-FORB	4	FACU-	GENTIANACEAE
BUTTONBUSH	SHRUB	-5	OBL	RUBIACEAE
FIELD CHICKWEED	P-FORB	4	FACU.	CARYOPHYLLACEAE
SHORT-PEDICELLED CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
FOUR-PARTED CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
THREE-STYLED CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
CLAMMY CHICKWEED	P-FORB	5	UPL	CARYOPHYLLACEAE
NODDING CHICKWEED	A-FORB	2	$\mathrm{FACU}+$	CARYOPHYLLACEAE
SHORT-PEDICELLED CHICKWEED	A-FORB	4	FACU-	CARYOPHYLLACEAE
CURTIS'S MOUSE-EAR CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
SMALL MOUSE-EAR CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
COMMON MOUSE-EAR CHICKWEED	P-FORB	3	FACU	CARYOPHYLLACEAE

른U
 Physiognomy P-FORB
P-FORB
A-FORB
A-FORB
A-FORB
TREE
TREE
A-FORB
P-FORB
TREE
TREE
P-FORB
SHRUB
SHRUB
W-VINE
W-VINE
TREE
TREE
SHRUB
A-GRASS
A-FORB
A-FORB
A-FORB
A-FORB
P-FORB
P-FORB
B-FORB
A-FORB
P-FORB
P-FORB
A-FORB
A-FORB
SHRUB
P-FORB
A-FORB
A-FORB
A-FORB
A-FORB
P-FORB
A-FORB
A-FORB
A-FORB
P-
APPliNDIIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
CERTES	*	CERATOCEPHALUS TESTICULATUS	BUR BUTTERCUP	A-FORB	5	UPL	RANUNCULACEAE
CERDEM	3	Ceratophyllum demersum	COONTAIL	P-FORB	-5	OBL	CERATOPHYLLACEAE
CERMUR	10	Ceratophyllum muricatum	SPINY COONTAIL	P-FORB	-5	OBL	CERATOPHYLLACEAE
CERCAN	3	Cercis canadensis	EASTERN REDBUD	TREE	3	FACU	CAESALPINIACEAE
CHAJAP	-	CHAENOMELES JAPONICA	JAPANESE QUINCE	SHRUB	5	UPL	ROSACEAE
CHAMIN	*	CHAENORRHINUM MINUS	DWARF SNAPDRAGON	A-FORB	5	UPL	SCROPHULARIACEAE
CHAPRC	1	Chaerophyllum procumbens	STREAMBANK CHERVIL	A-FORB	-1	FAC +	APIACEAE
CHATAI	1	Chaerophyllum tainturieri	WILD CHERVIL	A-FORB	2	FACU +	APIACEAE
CHACAL	10	Chamaedaphne calyculata v. angustifolia	LEATHERLEAF	SHRUB	-5	OBL	ERICACEAE
CHALUT	9	Chamaelirium luteum	BLAZING STAR	P-FORB	4	FACU	LILIACEAE
CHANOB	*	CHAMAEMELUM NOBILE	GARDEN CHAMOMILE	P-FORB	5	UPL	ASTERACEAE
CHAGEY	10	Chamaesyce geveri	GYERE'S SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHAGLY	3	Chamaesyce glyptosperma	SMOOTH CREEPING SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHAHUM	1	Chamaesyce humistrata	SPREADING SPURGE	A-FORB	-3	FACW	EUPHORBIACEAE
CHAMAC	0	Chamaesyce maculata	NODDING SPURGE	A-FORB	4	FACU.	EUPHORBIACEAE
CHAPOL	10	Chamaesyce polygonifolia	SEASIDE SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHAPRS	*	CHAMAESYCE PROSTRATA	MATTED SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHASEN	2	Chamaesyce serpens	ROUND-LEAVED SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHASEL	*	CHAMAESYCE SERPYLLIFOLIA	THYME-LEAVED SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHASUP	0	Chamaesyce supina	SPOTTED CREEPING SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHAVER	0	Chamaesyce vermiculata	HAIRY SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CHALAT	4	Chasmanthium latifolium	SEA OATS	P-GRASS	-3	FACW	POACEAE
CHEFEE	8	Cheilanthes feei	BABY LIP FERN	FERN	5	UPL	ADIANTACEAE
CHELAN	7	Cheilanthes lanosa	HAIRY LIP FERN	FERN	5	UPL	ADIANTACEAE
CHEMAJ	-	CHELIDONIUM MAJUS	CELANDINE	B-FORB	5	UPL	PAPAVERACEAE
CHEGLB	7	Chelone glabra	WHITE TURTLEHEAD	P-FORB	-5	OBL	SCROPHULARIACEAE
CHEOBL	B	Chelone obliqua v. speciosa	PINK TURTLEHEAD	P-FORB	-5	OBL	SCROPHULARIACEAE
CHEALB	-	CHENOPODIUM ALBUM	LAMB'S QUARTERS	A-FORB	1	FAC-	CHENOPODIACEAE
CHEAMB	-	CHENOPODIUM AMBROSIOIDES	AMERICAN WORMSEED	A-FORB	1	FAC-	CHENOPODIACEAE
CHEBER	0	Chenopodium berlandieri	GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEBON	-	CHENOPODIUM BONUS-HENRICUS	GOOD KING HENRY	P-FORB	5	UPL	CHENOPODIACEAE
CHEBOT	*	CHENOPODIUM BOTRYS	JERUSALEM OAK	A-FORB	1	FAC-	CHENOPODIACEAE
CHEBUS	2	Chenopodium bushianum	GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHECAP	-	CHENOPODIUM CAPITATUM	STRAWBERRY BLITE	A-FORB	5	UPL	CHENOPODIACEAE
CHEDES	0	Chenopodium desiccatum v. leptophylloides	NARROW-LEAVED GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEGIG	3	Chenopodium gigantospermum	MAPLE-LEAVED GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEGLC	*	CHENOPODIUM GLAUCUM	OAK-LEAVED GOOSEFOOT	A-FORB	-3	FACW	CHENOPODIACEAE
CHEMIS	1	Chenopodium missouriense	MISSOURI GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEMUR	-	CHENOPODIUM MURALE	NETTLE-LEAVED GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEPAL	2	Chenopodium pallescens	NARROW-LEAVED GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEPOL	*	CHENOPODIUM POLYSPERMUM	MANY-SEEDED GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHEPUM	*	CHENOPODIUM PUMILIO	GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CHERUB	*	CHENOPODIUM RUBRUM	COAST BLITE	A-FORB	- 5	OBL	CHENOPODIACEAE

Acronym	CC	Scientific Name	Common Name
CHESTA	3	Chenopodium standleyanum	WOODLAND GOOSEFOOT
CHESTR	0	Chenopodium strictum v.glaucophyllum	GOOSEFOOT
CHEURB	*	CHENOPODIUM URBICUM	CITY GOOSEFOOT
CHIMAC	10	Chimaphila maculata	SPOTTED WINTERGREEN
CHIUMB	10	Chimaphila umbellata v. cisatlantica	PIPSISSEWA
CHLGAY	*	CHLORIS GAYANA	FINGER GRASS
CHLVER	*	CHLORIS VERTICILLATA	WINDMILL GRASS
CHOTEN	*	CHORISPORA TENELLA	PURPLE ROCKET
CICINT	*	CICHORIUM INTYBUS	CHICKORY
CICBUL	9	Cicuta bulbifera	BULBLET-BEARING WATER HEMLOCK
CICMAC	4	Cicuta maculata	WATER HEMLOCK
CIMAME	10	Cimicifuga americana	AMERICAN BUGBANE
CIMRAC	10	Cimicifuga racemosa	FALSE BUGBANE
CIMRUB	10	Cimicifuga rubifolia	BLACK COHOSH
CINARU	5	Cinna arundinacea	COMMON WOOD REED
CINLAT	10	Cinna latifolia	DROOPING WOOD REED
CIRALP	5	Circaea alpina	SMALL ENCHANTER'S NIGHTSHADE
CIRLUT	2	Circaea lutetiana v. canadensis	ENCHANTER'S NIGHTSHADE
CIRALT	3	Cirsium altissimum	TALL THISTLE
CIRARV	*	CIRSIUM ARVENSE	FIELD THISTLE
CIRCAR	B	Cirsium carolinianum	CAROLINA THISTLE
CIRDIS	3	Cirsium discolor	PASTURE THISTLE
CIRMUT	9	Cirsium muticum	FEN THISTLE
CIRPIT	10	Cirsium pitcheri	DUNE THISTLE
CIRPUM	- 7	Cirsium pumilum	HILL'S THISTLE
CIRUND	*	CIRSIUM UNDULATUM	WAVY-LEAVED THISTLE
CIRVUL	*	CIRSIUM VULGARE	BULL THISTLE
CITLAN	*	CITRULLUS LANATUS	WATERMELON
CLAMAR	10	Cladium mariscoides	TWIG RUSH
CLALUT	10	Cladrastis lutea	YELLOWWOOD
CLAVIR	1	Claytonia virginica	SPRING BEAUTY
CLECRI	10	Clematis crispa	BLUE JASMINE
CLEOCC	10	Clematis occidentalis	MOUNTAIN CLEMATIS
CLEPIT	4	Clematis pitcheri	LEATHER FLOWER
CLETER	*	CLEMATIS TERNIFLORA	VIRGIN'S BOWER
CLEVIO	10	Clematis viorna	LEATHERFLOWER
CLEVIR	3	Clematis virginiana	VIRGIN'S BOWER
CLEHAS	*	CLEOME HASSLERIANA	SPIDER FLOWER
CLESER	*	CLEOME SERRULATA	PINK CLEOME
CLIVUL	*	CLINOPODIUM VULGARE	DOGMINT
CLIBOR	10	Clintonia borealis	BLUEBEAD
CLIMAR	9	Clitoria mariana	BUTTERFLY PEA
CNIBEN	*	CNICUS BENEDICTUS	BLESSED THISTLE

APMINIDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
COCCAR	6	Cocculus carolinus	SNAILSEED	W-VINE	0	FAC	MENISPERMACEAE
COEVIR	8	Coeloglossum viride	BRACTED GREEN ORCHID	P-FORB	0	FAC	ORCHIDACEAE
COIMON	*	COINCYA MONENSIS	WALLFLOWER CABBAGE	B-FORB	5	UPL	BRASSICACEAE
COLVER	5	Collinsia verna	BLUE-EYED MARY	A-FORB	3	FACU	SCROPHULARIACEAE
COLVIO	7	Collinsia violacea	VIOLET COLLINSIA	A-FORB	5	UPL	SCROPHULARIACEAE
COLCAN	9	Collinsonia canadensis	CITRONELLA HORSE BALM	P-FORB	0	FAC	LAMIACEAE
COLLIN	*	COLLOMIA LINEARIS	SLENDERLEAF COLLOMIA	A-FORB	3	FACU	POLEMONIACEAE
COMUMB	6	Comandra umbellata	BASTARD TOAD-FLAX	P-FORB	3	FACU	SANTALACEAE
COMCOM	*	COMMELINA COMMUNIS	COMMON DAY FLOWER	A-FORB	0	FAC	COMMELINACEAE
COMOIF	3	Commelina diffusa	OAY FLOWER	A.FORB	-3	FACW	COMMELINACEAE
COMERE	5	Commelina erecta	OAY FLOWER	P-FORB	5	UPL	COMMELINACEAE
COMVIR	5	Commelina virginica	DAY FLOWER	P-FORB	-3	FACW	COMMELINACEAE
COMPER	9	Comptonia peregrina	SWEET FERN	SHRUB	5	UPL	MYRICACEAE
CONCHI	10	Conioselinum chinense	HEMLOCK PARSLEY	P-FORB	-3	FACW	APIACEAE
CONMAC	-	CONIUM MACULATUM	POISON HEMLOCK	B-FORB	-3	FACW	APIACEAE
CONAME	10	Conopholis americana	CANCER ROOT	P.FORB	5	UPL	OROBANCHACEAE
CONORI	-	CONRINGIA ORIENTALIS	HARE'S EAR MUSTARD	A.FORB	-4	FACW +	BRASSICACEAE
CONAMB	*	CONSOLIDA AMBIGUA	ROCKET LARKSPUR	A-FORB	5	UPL	RANUNCULACEAE
CONREG	*	CONSOLIDA REGALIS	FORKING LARKSPUR	A.FORB	5	UPL	RANUNCULACEAE
CONMAJ	*	CONVALLARIA MAJALIS	LILY-OF-THE-VALLEY	P-FORB	5	UPL	LILIACEAE
CONARV	*	CONVOLVULUS ARVENSIS	FIELD BINDWEED	P-FORB	5	UPL	CONVOLVULACEAE
CONINC	*	CONVOLVULUS INCANUS	NEBRASKA GLORYBIND	P-FORB	5	UPL	CONVOLVULACEAE
CONCAN	0	Conyza canadensis	HORSEWEED	A.FORB	1	FAC-	ASTERACEAE
CONRAM	1	Conyza ramosissima	DWARF FLEABANE	A-FORB	5	UPL	ASTERACEAE
CORMAC	8	Corallorhiza maculata	SPOTTED CORAL ROOT	P-FORB	4	FACU.	ORCHIDACEAE
CORODO	6	Corallorhiza odontorhiza	FALL CORAL ROOT	P-FORB	5	UPL	ORCHIDACEAE
CORTRF	10	Corallorhiza trifida	EARLY CORAL ROOT	P-FORB	-2	FACW-	ORCHIDACEAE
CORWIS	7	Corallorhiza wisteriana	CORAL ROOT	P-FORB	2	FACU +	ORCHIDACEAE
CORBAS	-	COREOPSIS BASALIS	GOLDEN WAVE	A-FORB	5	UPL	ASTERACEAE
CORGRA	*	COREOPSIS GRANDIFLORA	LARGE-FLOWERED COREOPSIS	P-FORB	5	UPL	ASTERACEAE
CORLAN	5	Coreopsis lanceolata	SANO COREOPSIS	P-FORB	3	FACU	ASTERACEAE
CORPAL	6	Coreopsis palmata	PRAIRIE COREOPSIS	P-FORB	5	UPL	ASTERACEAE
CORPUB	B	Coreopsis pubescens	STAR TICKSEED	P-FORB	1	FAC	ASTERACEAE
CORTIN	*	COREOPSIS TINCTORIA	GOLDEN COREOPSIS	A-FORB	1	FAC-	ASTERACEAE
CORTRP	4	Coreopsis tripteris	TALL COREOPSIS	P-FORB	0	FAC	ASTERACEAE
CORSAT	*	CORIANDRUM SATIVUM	CORIANDER	A-FORB	5	UPL	APIACEAE
CORHYS	6	Corispermum hyssopifolium	COMMON BUGSEED	A.FORB	3	FACU	CHENOPODIACEAE
CORNIT	6	Corispermum nitidum	SMALL BUGSEED	A-FORB	5	UPL	CHENOPODIACEAE
CORALT	7	Cornus alternifolia	ALTERNATE-LEAVED DOGWOOD	TREE	5	UPL	CORNACEAE
CORAMO	10	Cornus amomum	SILKY DOGWOOD	SHRUB	-4	FACW +	CORNACEAE
CORCAN	10	Cornus canadensis	BUNCHBERRY	SHRUB	0	FAC	CORNACEAE
CORDRU	2	Cornus drummondii	ROUGH-LEAVED DOGWOOD	SHRUB	0	FAC	CORNACEAE
CORFLO	5	Cornus florida	FLOWERING DOGWOOD	TREE	4	FACU.	CORNACEAE

Family
CORNACEAE
FABACEAE
BRASSICACEAE
PAPAVERACEAE
CORYLACEAE
CORYLACEAE
ASTERACEAE
ASTERACEAE
ROSACEAE
ASTERACEAE
ASTERACEAE
ASTERACEAE
FABACEAE
FABACEAE
EUPHORBIACEAE
EUPHORBIACEAE

Common Name
STIFF DOGWOOD
PALE DOGWOOD
GRAY DOGWOOD
ROUND-LEAVED DOGWOOD
RED OSIER DOGWOOD
BAILEY'S DOGWOOD
CROWN VETCH
WART CRESS
GOLDEN CORYDALIS
PLAINS CORYDALIS
BRACTED CORYDALIS
PALE CORYDALIS
SLENDER CORYDALIS
HALE'S CORYDALIS
PINK CORYDALIS
AMERICAN FILBERT
BEAKED HAZELNUT
COMMON COSMOS
YELLOW COSMOS
MANY-FLOWERED COTONEASTER
SUGAR HAWTHORN
FIREBERRY HAWTHORN
SCARLET HAWTHORN
FALSE SCARLET HAWTHORN
COCK-SPUR HAWTHORN
LARGE-SEEDED HAWTHORN
BILTMORE HAWTHORN
PARSLEY HAW
DOWNY HAWTHORN
ENGLISH HAWTHORN
WASHINGTON HAWTHORN
FROSTED HAWTHORN
DOTTED HAWTHORN
LITTLEHIP HAWTHORN
FLESHY HAWTHORN
GREEN THORN
HAWK'S BEARD
HAWK'S BEARD
NARROW-LEAVED HAWK'S BEARD
RATTLEBOX
SHOWY RATTLEBOX
HOGWORT
SAND CROTON
SA

Acronym	CC	Scientific Name
CORFOE	7	Cornus foemina
COROBL	4	Cornus obliqua
CORRAC	2	Cornus racemosa
CORRUG	10	Cornus rugosa
CORSTS	4	Cornus stolonifera
CORSTB	9	Cornus stolonifera v. baileyi
CORVAR	$*$	CORONILLA VARIA
CORDID	\cdot	CORONOPUS DIDYMUS
CORAUR	5	Corydalis aurea
CORCAM	5	Corydalis campestris
CORCUR	7	Corydalis curvisiliqua v. grandibracteata
CORFLA	5	Corydalis flavula
CORMIM	4	Corydalis micrantha
CORMIA	10	Corydalis micrantha v. australis
CORSEM	9	Corydalis sempervirens
CORAME	4	Corylus americana
CORROS	8	Corylus rostrata
COSBIP	$*$	COSMOS BIPINNATUS
COSSUL	$*$	COSMOS SULPHUREUS
COTMUL	$*$	COTONEASTER MULTIFLORA
CRACAL	5	Crataegus calpodendron
CRACHR	5	Crataegus chrysocarpa
CRACOA	5	Crataegus coccinea
CRACOD	5	Crataegus coccinioides
CRACRU	2	Crataegus crus-galli
CRAFLA	5	Crataegus flabellata
CRAINT	5	Crataegus intricata
CRAMAR	10	Crataegus marshallii
CRAMOL	2	Crataegus mollis
CRAMON	$*$	CRATAEGUS MONOGYNA
CRAPHA	5	Crataegus phaenopyrum
CRAPRU	3	Crataegus pruinosa
CRAPUN	2	Crataegus punctata
CRASPA	6	Crataegus spathulata
CRASUC	5	Crataegus succulenta
CRAVIR	5	Crataegus viridis
CRECAP	$*$	CREPIS CAPILLARIS
CREPUL	$*$	CREPIS PULCHRA
CRETEC	$*$	CREPIS TECTORUM
CROSAG	3	Crotalaria sagittalis
CROSPE	$*$	CROTALARIA SPECTABILIS
CROCAP	0	Croton capitatus
CROGLA	1	Croton glandulosus v. septentrionalis
CRA		

Applinimix: Vegetation of Illinois Database

Acronym	CC	Scientific Neme	Common Name	Physiognomy	W	Wet	Family
CROLID	-	CROTON LINDHEIMERIANUS	ROUND-LEAVED WOOLLY CROTON	A-FORB	5	UPL	EUPHORBIACEAE
CROMON	2	Croton monanthogynus	PRAIRIE TEA	A-FORB	5	UPL	EUPHORBIACEAE
CROTEX	-	CROTON TEXENSIS	TEXAS CROTON	A-FORB	5	UPL	EUPHORBIACEAE
CROELL	5	Crotonopsis elliptica	RUSHFOIL	A-FORB	5	UPL	EUPHORBIACEAE
CROLIR	8	Crotonopsis linearis	RUSHFOIL	A-FORB	5	UPL	EUPHORBIACEAE
CRYSCH	-	CRYPSIS SCHOENOIDES	FALSE FOXTAIL	A-GRASS	5	UPL	POACEAE
CRYSTE	10	Cryptogramma stelleri	SLENDER CLIFFBRAKE	FERN	3	FACU	ADIANTACEAE
CRYCAN	1	Cryptotaenia canadensis	HONEWORT	P.FORB	0	FAC	APIACEAE
CUCMEL	-	CUCUMIS MELO	MUSKMELON	A-FORB	5	UPL	CUCURBITACEAE
CUCSAT	-	CUCUMIS SATIVUS	CUCUMBER	A-FORB	5	UPL	CUCURBITACEAE
CUCFOE	-	CUCURBITA FOETIDISSIMA	MISSOURI GOURD	H-VINE	5	UPL	CUCURBITACEAE
CUCPEP	-	CUCURBITA PEPO v. OVIFERA	PEAR GOURD	H-VINE	3	FACU	CUCURBITACEAE
CUNORI	5	Cunila origanoides	DITTANY	P-FORB	5	UPL	LAMIACEAE
CUPVIS	4	Cuphea viscosissima	BLUE WAXWEED	A-FORB	3	FACU	LYTHRACEAE
CUSCAM	2	Cuscuta campestris	FIELD DODDER	A-FORB	5	UPL	CUSCUTACEAE
CUSCEP	5	Cuscuta cephalanthi	BUTTONBUSH DODDER	A-FORB	5	UPL	CUSCUTACEAE
CUSCOM	10	Cuscuta compacta	COMPACT DODDER	A-FORB	5	UPL	CUSCUTACEAE
CUSCOR	5	Cuscuta coryli	HAZEL DODDER	A-FORB	5	UPL	CUSCUTACEAE
cuscus	5	Cuscuta cuspidata	STALKED DODDER	A-FORB	-4	FACW +	CUSCUTACEAE
CUSGLO	6	Cuscuta glomerata	ROPE DODDER	A-FORB	0	FAC	CUSCUTACEAE
CUSGRO	2	Cuscuta gronovii	COMMON DODDER	A-FORB	-3	FACW	CUSCUTACEAE
CUSIND	5	Cuscuta indecora	FALSE FIELD DODDER	A-FORB	0	FAC	CUSCUTACEAE
CUSPEN	5	Cuscuta pentagona	PRAIRIE DODDER	A-FORB	5	UPL	CUSCUTACEAE
CUSPOL	5	Cuscuta polygonorum	KNOTWEED DODDERE	A-FORB	5	UPL	CUSCUTACEAE
CYCATR	3	Cycloloma atriplicifolium	WINGED PIGWEED	A-FORB	3	FACU	CHENOPODIACEAE
CYDOBL	-	CYDONIA OBLONGA	COMMON QUINCE	TREE	5	UPL	ROSACEAE
CYMMUR	*	CYMBALARIA MURALIS	KENILWORTH IVY	P-FORB	5	UPL	SCROPHULARIACEAE
CYNLAE	1	Cynanchum laeve	BLUE VINE	W-VINE	0	FAC	ASCLEPIADACEAE
CYNNIG	-	CYNANCHUM NIGRUM	BLACK SWALLOW-WORT	P-FORB	5	UPL	ASCLEPIADACEAE
CYNDAC	*	CYNODON DACTYLON	BERMUDA GRASS	P-GRASS	3	FACU	POACEAE
CYNOFF	*	CYNOGLOSSUM OFFICINALE	COMMON HOUND'S TONGUE	B-FORB	5	UPL	BORAGINACEAE
CYNVIR	6	Cynoglossum virginianum	WILD COMFREY	P-FORB	5	UPL	BORAGINACEAE
CYNDIG	9	Cynosciadium digitatum	FALSE COWBANE	A-FORB	-3	FACW	APIACEAE
CYPACU	2	Cyperus acuminatus	SHORT-POINTED FLAT SEDGE	A-SEDGE	-5	OBL	CYPERACEAE
CYPARI	2	Cyperus aristatus	AWNED FLAT SEDGE	A-SEDGE	- 5	OBL	CYPERACEAE
CYPCOM	.	CYPERUS COMPRESSUS	FLAT SEDGE	A-SEDGE	-4	FACW +	CYPERACEAE
CYPDEN	0	Cyperus densicaespitosus	TUFTED FLAT SEDGE	A. SEDGE	5	UPL	CYPERACEAE
CYPDIA	7	Cyperus diandrus	UMBRELLA FLAT SEDGE	A-SEDGE	-4	FACW +	CYPERACEAE
CYPENG	7	Cyperus engelmannii	FALSE RUSTY NUT SEDGE	A-SEDGE	-5	OBL	CYPERACEAE
CYPERY	1	Cyperus erythrorhizos	RED-ROOTED NUT SEDGE	A-SEDGE	-5	OBL	CYPERACEAE
CYPESC	0	Cyperus esculentus	FIELD NUT SEDGE	P-SEDGE	-3	FACW	CYPERACEAE
CYPFER	1	Cyperus ferruginescens	RUSTY NUT SEDGE	A-SEDGE	-5	OBL	CYPERACEAE
CYPFIN	\%	CYPERUS FILICINUS	SLENDER FLAT SEDGE	A-SEDGE	-5	OBL	CYPERACEAE

Physiognomy	W	Wet	Family
P-SEDGE	4	FACU.	CYPERACEAE
A-SEDGE	-5	OBL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
A-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	1	FAC-	CYPERACEAE
P-SEDGE	5	UPL	CYPERACEAE
P-SEDGE	0	FAC	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-SEDGE	1	FAC-	CYPERACEAE
A-SEDGE	-4	$\mathrm{FACW}+$	CYPERACEAE
P-SEDGE	2	$\mathrm{FACU}+$	CYPERACEAE
P-SEDGE	-3	FACW	CYPERACEAE
P-FORB	-3	FACW	ORCHIDACEAE
P-FORB	-3	FACW	ORCHIDACEAE CYPCAN
P-FORB	-5	OBL	ORCHIDACEAE
P-FORB	-3	FACW	ORCHIDACEAE CYPPAR
P-FORB	-1	$\mathrm{FAC}+$	ORCHIDACEAE
P-FORB	-1	$\mathrm{FAC}+$	ORCHIDACEAE
P-FORB	-4	FACW +	ORCHIDACEAE
FERN	-2	FACW.	ASPLENIACEAE
FERN	3	FACU	ASPLENIACEAE
FERN	3	FACU	ASPLENIACEAE
FERN	3	FACU	ASPLENIACEAE
FERN	3	FACU	ASPLENIACEAE
FERN	3	FACU	ASPLENIACEAE
P-GRASS	3	FACU	POACEAE
A-GRASS	5	UPL	POACEAE
P-FORB	5	UPL	FABACEAE
P.FORB	5	UPL	FABACEAE
A-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-GRASS	5	UPL	POACEAE
P-FORB	4	FACU-	SCROPHULARIACEAE
P-FORB	4	FACU.	SOLANACEAE
A-FORB	4	FACU-	SOLANACEAE
A-FORB	4	FACU-	SOLANACEAE
B-FORB	4	FACU.	APIACEAE
B-FORB	4	FACU-	APIACEAE
SHRUB	-5	OBL	LYTHRACEAE
P-FORB	5	UPL	RANUNCULACEAE
P-FORB	5	UPL	RANUNCULACEAE
P.FORB	5	UPL	RANUNCULACEAE

Common Name
SLENDER SAND SEDGE
YELLOW FLAT SEDGE
GALINGALE
SMOOTH SAND SEDGE
BLACK-SEEDED IRIA
LANCASTER UMBRELLA SEDGE
MIDLAND SAND SEDGE
HEDGEHOG CLUB RUSH
FALSE GREEN FLAT SEDGE
FALSE HEDGEHOG CLUB RUSH
BROOK FLAT SEDGE
ROUGH SAND SEDGE
LONGL-SCALED NUT SEDGE
MOCCASIN FLOWER
HYBRID LADY'S SLIPPERS
WHITE LADY'S SLIPPER
HYBRID LADY'S SLIPPERS
SMALL YELLOW LADY'S SLIPPER
LARGE YELLOW LADY'S SLIPPER
SHOWY LADY'S SLIPPER
BERRY BLADDER FERN
HYBRID FRAGILE FERN
HYBRID FRAGILE FERN
HYBRID FRAGILE FERN
TENNESSEE FRAGILE FERN
HYBRID FRAGILE FERN
ORCHARD GRASS
CROWFOOT GRASS
WHITE PRAIRIE CLOVER
LEAFY PRAIRIE CLOVER
FOXTAIL DALEA
PURPLE PRAIRIE CLOVER
POVERTY OAT GRASS
MULLEIN FOXGLOVE
ANGEL'S TRUMPET
JIMSONWEED
PURPLE JIMSONWEED
QUEEN ANNE'S LACE
SMALL WILD CARROT
SWAMP LOOSESTRIFE
WILD BLUE LARKSPUR
WILD BLUE LARKSPUR
DWARF LARKSPUR
Alplinilix: Vegetation of Illinois Database

Physiognomy	W	Wet	Femily
FERN	5	UPL	DENNSTAEDTIACEAE
P-FORB	-1	$\mathrm{FAC}+$	BRASSICACEAE
P-FORB	4	FACU	BRASSICACEAE
P-GRASS	-4	FACW +	POACEAE
A-FORB	5	UPL	BRASSICACEAE
A-FORB	5	UPL	BRASSICACEAE
A-FORB	5	UPL	BRASSICACEAE
P-FORB	1	FAC-	MIMOSACEAE
P-FORB	1	FAC-	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	3	FACU	FABACEAE
P.FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	3	FACU	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	3	FACU	FABACEAE
P-FORB	3	FACU	FABACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	5	UPL	FABACEAE
P.FORB	5	UPL	FABACEAE
SHRUB	5	UPL	PHILADELPHACEAE
A-FORB	5	UPL	CARYOPHYLLACEAE
P-FORB	5	UPL	CARYOPHYLLACEAE
P-FORB	5	UPL	CARYOPHYLLACEAE
P-GRASS	-3	FACW	POACEAE
P-FORB	5	UPL	PAPAVERACEAE
P-FORB	5	UPL	PAPAVERACEAE
P-FORB	5	UPL	PAPAVERACEAE
A-FORB	-3	FACW	ACANTHACEAE
P-FORB	-5	OBL	LYTHRACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
A-GRASS	3	FACU	POACEAE
A-GRASS	5	UPL	POACEAE
A-GRASS	3	FACU	POACEAE
A-GRASS	3	FACU	POACEAE
A-GRASS	5	UPL	POACEAE
A-FORB	3	FACU	RUBIACEAE
P-FORB	-3	FACW	RUBIACEAE

Common Name	Physiognomy	W	Wet	Family
CHINESE YAM	H-VINE	4	FACU-	DIOSCOREACEAE
WILD YAM	H-VINE	3	FACU	DIOSCOREACEAE
WILD YAM	H-VINE	1	FAC-	DIOSCOREACEAE
PERSIMMON	TREE	0	FAC	EBENACEAE
WALL ROCKET	A-FORB	5	UPL	BRASSICACEAE
SAND ROCKET	SHRUB	5	UPL	BRASSICACEAE
CUT-LEAVED TEASEL	B-FORB	5	UPL	DIPSACACEAE
COMMON TEASEL	B-FORB	5	UPL	DIPSACACEAE
LEATHERWOOD	SHRUB	0	FAC	THYMELAEACEAE
INLAND SALT GRASS	P-GRASS	5	UPL	POACEAE
JEWELED SHOOTING STAR	P-FORB	5	UPL	PRIMULACEAE
FRENCH'S SHOOTING STAR	P-FORB	5	UPL	PRIMULACEAE
SHOOTING STAR	P-FORB	3	FACU	PRIMULACEAE
SHORT-FRUITED WHITLOW GRASS	A-FORB	5	UPL	BRASSICACEAE
WEDGE-LEAVED WHITLOW GRASS	A-FORB	5	UPL	BRASSICACEAE
WHITLOW GRASS	A-FORB	5	UPL	BRASSICACEAE
COMMON WHITLOW GRASS	A-FORB	5	UPL	BRASSICACEAE
AMERICAN DRAGONHEAD	B-FORB	3	FACU	LAMIACEAE
ANNUAL BLACK-EYED SUSAN	A-FORB	4	FACU-	ASTERACEAE
NARROW-LEAVED SUNDEW	P-FORB	-5	OBL	DROSERACEAE
ROUND-LEAVED SUNDEW	P-FORB	-5	OBL	DROSERACEAE
BOOTT'S WOOD FERN	FERN	-3	FACW	ASPLENIACEAE
SPINULOSE WOOD FERN	FERN	5	UPL	ASPLENIACEAE
LOG FERN	FERN	-5	OBL	ASPLENIACEAE
CLINTON'S WOOD FERN	FERN	-4	$\mathrm{FACW}+$	ASPLENIACEAE
CRESTED WOOD FERN	FERN	-5	OBL	ASPLENIACEAE
MALE FERN	FERN	5	UPL	ASPLENIACEAE
GOLDIE FERN	FERN	0	FAC	ASPLENIACEAE
COMMON WOOD FERN	FERN	0	FAC	ASPLENIACEAE
MARGINAL SHIELD FERN	FERN	3	FACU	ASPLENIACEAE
HYBRID WOOD FERN	FERN	5	UPL	ASPLENIACEAE
WOOD FERN	FERN	0	FAC	ASPLENIACEAE
INDIAN STRAWBERRY	P-FORB	4	FACU-	ROSACEAE
THREE-WAY SEDGE	P-SEDGE	-5	OBL	CYPERACEAE
FETID MARIGOLD	A-FORB	5	UPL	ASTERACEAE
PALE PURPLE CONEFLOWER	P-FORB	5	UPL	ASTERACEAE
BROAD-LEAVED PURPLE CONEFLOWER	P-FORB	5	UPL	ASTERACEAE
JUNGLE RICE	A-GRASS	-3	FACW	POACEAE
BARNYARD GRASS	A-GRASS	-3	FACW	POACEAE
SPINY BARNYARD GRASS	A-GRASS	-5	OBL	POACEAE
SALT-MARSH COCKSPUR GRASS	A-GRASS	-5	OBL	POACEAE
WILD CUCUMBER	H-VINE	-2	FACW-	CUCURBITACEAE
LANCE-LEAVED BURHEAD	P-FORB	-5	OBL	ALISMATACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
ECHCOR	6	Echinodorus cordifolius	CREEPING BURHEAD	P-FORB	-5	OBL	ALISMATACEAE
ECHTEN	10	Echinodorus teneilus v. parvulus	SMALL BURHEAD	P-FORB	-5	OBL	ALISMATACEAE
ECHSPH	*	ECHINOPS SPHAEROCEPHALUS	GLOBE THISTLE	P-FORB	5	UPL	ASTERACEAE
ECHVUL	*	ECHIUM VULGARE	VIPER'S BUGLOSS	B-FORB	5	UPL	BORAGINACEAE
ECLPRO	2	Eclipta prostrata	YERBA DE TAJO	A-FORB	-3	FACW	ASTERACEAE
EGEDEN	*	EGERIA DENSA	GIANT WATERWEED	P-FORB	-5	OBL	HYDROCHARITACEAE
ELAANG	*	ELAEAGNUS ANGUSTIFOLIA	RUSSIAN OLIVE	SHRUB	4	FACU-	ELAEAGNACEAE
ELAMUL	*	ELAEAGNUS MULTIFLORA	OLEASTER	SHRUB	5	UPL	ELAEAGNACEAE
ELAUMB	*	ELAEAGNUS UMBELLATA	AUTUMN OLIVE	SHRUB	5	UPL	ELAEAGNACEAE
ELABRA	10	Elatine brachysperma	WATERWORT	A-FORB	-3	FACW	ELATINACEAE
ELEACI	3	Eleocharis acicularis	NEEDLE SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEELE	8	Eleocharis elliptica	GOLDEN-SEEDED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEELC	7	Eleocharis eiliptica v. compressa	FLAT-STEMMED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEEQU	10	Eleocharis equisetoides	HORSETAIL SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEERY	3	Eleocharis erythropoda	RED-ROOTED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEGEN	10	Eleocharis geniculata	KNEE SPIKE RUSH	A-SEDGE	-3	FACW	CYPERACEAE
ELEINT	7	Eleocharis intermedia	MATTED SPIKE RUSH	A-SEDGE	-3	FACW	CYPERACEAE
ELEOBT	2	Eleocharis obtusa	BLUNT SPIKE RUSH	A-SEDGE	-5	OBL	CYPERACEAE
ELEOLI	10	Eleocharis olivacea	WRINKLE-SHEATHED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEPAL	8	Eleocharis palustris	GREAT SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEPAR	*	ELEOCHARIS PARVULA	DWARF SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEPAU	10	Eleocharis pauciflora	MATTED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEQUA	6	Eleocharis quadrangulata	ANGLED SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEROS	10	Eleocharis rostellata	WICKET SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELESMA	5	Eleocharis smallii	MARSH SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEVER	7	Eleocharis verrucosa	SLENDER SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELEWOL	9	Eleocharis wolfii	WOLF'S SPIKE RUSH	P-SEDGE	-5	OBL	CYPERACEAE
ELECAR	3	Elephantopus carolinianus	ELEPHANT'S FOOT	P-FORB	1	FAC-	ASTERACEAE
ELEIND	-	ELEUSINE INDICA	CROWFOOT GRASS	A-GRASS	3	FACU	POACEAE
ELLNYC	1	Ellisia nyctelea	AUNT LUCY	A-FORB	-1	FAC +	HYDROPHYLLACEAE
ELOCAN	5	Elodea canadensis	COMMON WATERWEED	P-FORB	-5	OBL	HYDROCHARITACEAE
ELONUT	6	Elodea nuttaliii	SLENDER WATERWEED	P-FORB	-5	OBL	HYDROCHARITACEAE
ELYARE	-	ELYMUS ARENARIUS	LYME GRASS	P-GRASS	3	FACU	POACEAE
ELYCAN	4	Elymus canadensis	CANADA WILD RYE	P-GRASS	1	FAC.	POACEAE
ELYHYS	5	Elymus hystrix	BOTTLEBRUSH GRASS	P-GRASS	5	UPL	POACEAE
ELYRIP	6	Elymus riparius	RIVERBANK WILD RYE	P-GRASS	-3	FACW	POACEAE
ELYVIL	4	Elymus villosus	SILKY WILD RYE	P-GRASS	3	FACU	POACEAE
ELYVIR	4	Elymus virginicus	VIRGINIA WILD RYE	P-GRASS	-2	FACW.	POACEAE
EPIVIR	9	Epifagus virginiana	BEECH DROPS	P-FORB	5	UPL	OROBANCHACEAE
EPIREP	10	Epigaea repens	TRAILING ARBUTUS	P-FORB	5	UPL	ERICACEAE
EPIANG	3	Epilobium angustifolium	FIREWEED	P-FORB	0	FAC	ONAGRACEAE
EPICIL	6	Epilobium ciliatum	NORTHERN WILLOW HERB	P-FORB	3	FACU	ONAGRACEAE
EPICOL	3	Epilobium coloratum	CINNAMON WILLOW HERB	P-FORB	-5	OBL	ONAGRACEAE

APPENIDIX: Vegetation of Illinoss Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
EPIHIR	*	EPILOBIUM HIRSUTUM	HAIRY WILLOW HERB	P-FORB	- 4	$\mathrm{FACW}+$	ONAGRACEAE
EPILEP	9	Epilobium leptophyllum	FEN WILLOW HERB	P-FORB	-5	OBL	ONAGRACEAE
EPISTR	10	Epilobium strictum	DOWNY WILLOW HERB	P-FORB	-5	OBL	ONAGRACEAE
EPIHEL	*	EPIPACTIS HELLEBORINE	HELLEBORINE ORCHID	P.FORB	5	UPL	ORCHIDACEAE
EQUARV	0	Equisetum arvense	COMMON HORSETAIL	FERN	0	FAC	EQUISETACEAE
EQUFER	2	Equisetum \times ferrissii	JOLIET HORSETAIL	FERN	-3	FACW	EQUISETACEAE EQUFLU
	7	Equisetum fluviatile	PIPES	FERN	-5	OBL	EQUISETACEAE
EQUHYE	2	Equisetum hyemale affine	TALL SCOURING RUSH	FERN	-2	FACW-	EQUISETACEAE
EQULAE	4	Equisetum laevigatum	SMOOTH SCOURING RUSH	FERN	-3	FACW	EQUISETACEAE
EQULIT	10	Equisetum \times litorale	SHORELINE HORSETAIL	FERN	-5	OBL	EQUISETACEAE
EQUNEL	10	Equisetum \times nelsonii	NELSON'S HORSETAIL	FERN	-1	$\mathrm{FAC}+$	EQUISETACEAE
EQUPAL	10	Equisetum palustre	MARSH HORSETAIL	FERN	-3	FACW	EQUISETACEAE
EQUPRA	9	Equisetum pratense	MEADOW HORSETAIL	FERN	-3	FACW	EQUISETACEAE
EQUSCI	10	Equisetum scirpoides	DWARF SCOURING RUSH	FERN	-1	FAC +	EQUISETACEAE
EQUSYL	10	Equisetum sylvaticum	WOOD HORSETAIL	FERN	-3	FACW	EQUISETACEAE
EQUTRA	10	Equisetum \times trachyodon	JESUP'S HORSETAIL	FERN	-4	FACW +	EQUISETACEAE
EQUVAR	8	Equisetum variegatum	SMALL SCOURING RUSH	FERN	-3	FACW	EQUISETACEAE
ERACAP	5	Eragrostis capillaris	LACE GRASS	A-GRASS	-3	FACW	POACEAE
ERACIL	*	ERAGROSTIS CILIANENSIS	STINK GRASS	A-GRASS	3	FACU	POACEAE
ERACUR	*	ERAGROSTIS CURVULA	WEEPING LOVE GRASS	P-GRASS	0	FAC	POACEAE
ERADIF	*	ERAGROSTIS DIFFUSA	WESTERN LOVE GRASS	A-GRASS	5	UPL	POACEAE
ERAFRA	2	Eragrostis frankii	SANOBAR LOVE GRASS	A-GRASS	-3	FACW	POACEAE
ERAHIR	5	Eragrostis hirsuta	HAIRY LOVE GRASS	P-GRASS	3	FACU	POACEAE
ERAHYP	5	Eragrostis hypnoides	CREEPING LOVE GRASS	A-GRASS	-5	OBL	POACEAE
ERAMIN	\cdots	ERAGROSTIS MINOR	LESSER LOVE GRASS	A-GRASS	5	UPL	POACEAE
ERANEO	*	ERAGROSTIS NEOMEXICANA	NEW MEXICAN LOVE GRASS	A-GRASS	5	UPL	POACEAE
ERAPEC	0	Eragrostis pectinacea	SMALL LOVE GRASS	A-GRASS	0	FAC	POACEAE
ERAPIL	*	ERAGROSTIS PILOSA	INDIA LOVE GRASS	A-GRASS	3	FACU	POACEAE
ERASPE	3	Eragrostis spectabilis	PURPLE LOVE GRASS	P-GRASS	5	UPL	POACEAE
ERATRI	5	Eragrostis trichodes	ICE CREAM GRASS	P-GRASS	5	UPL	POACEAE
ERAHYE	*	ERANTHIS HYEMALIS	WINTER ACONITE	P-FORB	5	UPL	RANUNCULACEAE
EREHIE	2	Erechtites hieracifolia	FIREWEED	A-FORB	3	FACU	ASTERACEAE
ERIALO	4	Erianthus alopecuroides	SILVER PLUME GRASS	P-GRASS	4	FACU-	POACEAE
ERIBRE	10	Erianthus brevibarbis	BROWN PLUME GRASS	P-GRASS	-5	OBL	POACEAE
ERIRAV	*	ERIANTHUS RAVENNAE	PLUME GRASS	P-GRASS	- 3	FACW	POACEAE
ERIBUL	7	Erigenia bulbosa	HARBINGER OF SPRING	P-FORB	5	UPL	APIACEAE
ERIANN	1	Erigeron annuus	ANNUAL FLEABANE	B-FORB	1	FAC.	ASTERACEAE
ERIPHI	3	Erigeron philadelphicus	MARSH FLEABANE	P-FORB	-3	FACW	ASTERACEAE
ERIPUL	5	Erigeron pulchellus	ROBIN'S PLANTAIN	P-FORB	3	FACU	ASTERACEAE
ERISTR	2	Erigeron strigosus	DAISY FLEABANE	P-FORB	1	FAC-	ASTERACEAE
ERICON	*	ERIOCHLOA CONTRACTA	PRAIRIE CUP GRASS	A-GRASS	0	FAC	POACEAE
ERILEM	*	ERIOCHLOA LEMMONII v. GRACILIS	SLENDER CUP GRASS	A-GRASS	-3	FACW	POACEAE
ERIVIL	*	ERIOCHLOA VILLOSA	CHINESE CUP GRASS	A-GRASS	0	FAC	POACEAE

APPI:NIDIX: Vegetation of Illinois Database

Acronym		Scientific Name	Common Name	Physiognomy	W	Wet	Family
ERIVEV	*	ERIOPHILA VERNA	MOUSE-EARED WHITLOW GRASS	A-GRASS	5	UPL	POACEAE
ERIVEP	*	ERIOPHILA VERNA v. PRAECOX	MOUSE-EARED WHITLOW GRASS	A-GRASS	5	UPL	POACEAE
ERIANG	10	Eriophorum angustifolium	NARROW-LEAVED COTTON GRASS	P-SEDGE	-5	OBL	CYPERACEAE
ERIGRA	10	Eriophorum gracile	SLENDER COTTON GRASS	P.SEDGE	-5	OBL	CYPERACEAE
ERITEN	10	Eriophorum tenellum	WEAK COTTON GRASS	P-SEDGE	-5	OBL	CYPERACEAE
ERIVIG	10	Eriophorum virginicum	RUSTY COTTON GRASS	P-SEDGE	-5	OBL	CYPERACEAE
ERIVID	10	Eriophorum viridi-carinatum	TALL COTTON GRASS	P-SEDGE	-5	OBL	CYPERACEAE
EROCIC	-	ERODIUM CICUTARIUM	STORKSBILL	B-FORB	5	UPL	GERANIACEAE
ERUVES	*	ERUCA VESICARIA	GARDEN ROCKET	A-FORB	5	UPL	BRASSICACEAE
ERUGAL	-	ERUCASTRUM GALLICUM	DOG MUSTARD	A-FORB	5	UPL	BRASSICACEAE
ERYPRO	5	Eryngium prostratum	ERYNGO	P-FORB	-5	OBL	APIACEAE
ERYYUC	7	Eryngium yuccifolium	RATTLESNAKE MASTER	P-FORB	-1	FAC +	APIACEAE
ERYCAP	7	Erysimum capitatum	WESTERN WALLFLOWER	B-FORB	5	UPL	BRASSICACEAE
ERYCHE	*	ERYSIMUM CHEIRANTHOIDES	WORMSEED MUSTARD	A.FORB	3	FACU	BRASSICACEAE
ERYHIE	*	ERYSIMUM HIERACIFOLIUM	HAWKWEED MUSTARD	P-FORB	5	UPL	BRASSICACEAE
ERYINC	*	ERYSIMUM INCONSPICUUM	SMALL WORMSEED MUSTARD	P-FORB	5	UPL	BRASSICACEAE
ERYREP	*	ERYSIMUM REPANDUM	TREACLE MUSTARD	A-FORB	5	UPL	BRASSICACEAE
ERYALB	4	Erythronium albidum	WHITE ADDER'S TONGUE	P-FORB	5	UPL	LILIACEAE
ERYAME	7	Erythronium americanum	YELLOW ADDER'S TONGUE	P-FORB	5	UPL	LILIACEAE
ERYMES	9	Erythronium mesochoreum	WHITE DOG-TOOTH VIOLET	P-FORB	5	UPL	LILIACEAE
ESCCAL	-	ESCHSCHOLTZIA CALIFORNICA	CALIFORNIA POPPY	A-FORB	5	UPL	PAPAVERACEAE
EUOALA	*	EUONYMUS ALATUS	WINGED EUONYMUS	SHRUB	5	UPL	CELASTRACEAE
EUOAME	10	Euonymus americanus	STRAWBERRY BUSH	SHRUB	1	FAC-	CELASTRACEAE
EUOATR	5	Euonymus atropurpureus	WAHOO	SHRUB	1	FAC-	CELASTRACEAE
EUOBUN	-	EUONYMUS BUNGEANUS	CHINESE SPINDLE TREE	SHRUB	5	UPL	CELASTRACEAE
EUOEUR	-	EUONYMUS EUROPAEUS	EUROPEAN SPINDLE-TREE	SHRUB	5	UPL	CELASTRACEAE
EUOFOR	-	EUONYMUS FORTUNEI	WINTERCREEPER	SHRUB	5	UPL	CELASTRACEAE
EUOHAM	-	EUONYMUS HAMILTONIANUS	JAPANESE SPINDLE TREE	SHRUB	5	UPL	CELASTRACEAE
EUOKIA	-	EUONYMUS KIAUTSCHOVICUS	CLIMBING EUONYMUS	SHRUB	5	UPL	CELASTRACEAE
EUOOBO	7	Euonymus obovatus	RUNNING STRAWBERRY BUSH	SHRUB	5	UPL	CELASTRACEAE
EUPALT	2	Eupatorium altissimum	TALL BONESET	P-FORB	3	FACU	ASTERACEAE
EUPCOE	3	Eupatorium coelestinum	MISTFLOWER	P-FORB	-1	FAC +	ASTERACEAE
EUPFIS	7	Eupatorium fistulosum	HOLLOW JOE PYE WEED	P-FORB	-5	OBL	ASTERACEAE
EUPINC	9	Eupatorium incarnatum	THOROUGHWORT	P-FORB	0	FAC	ASTERACEAE
EUPMAC	5	Eupatorium maculatum	SPOTTED JOE PYE WEED	P-FORB	-5	OBL	ASTERACEAE
EUPPER	4	Eupatorium perfoliatum	COMMON BONESET	P-FORB	-4	FACW +	ASTERACEAE
EUPPUR	5	Eupatorium purpureum	PURPLE JOE PYE WEED	P-FORB	0	FAC	ASTERACEAE
EUPRUG	2	Eupatorium rugosum	WHITE SNAKEROOT	P-FORB	3	FACU	ASTERACEAE
EUPSER	1	Eupatorium serotinum	LATE BONESET	P-FORB	-1	FAC +	ASTERACEAE
EUPSES	8	Eupatorium sessilifolium	UPLAND BONESET	P-FORB	5	UPL	ASTERACEAE
EUPCOM	6	Euphorbia commutata	TINTED SPURGE	P-FORB	5	UPL	EUPHORBIACEAE
EUPCOR	3	Euphorbia corollata	FLOWERING SPURGE	P-FORB	5	UPL	EUPHORBIACEAE
EUPCYP	*	EUPHORBIA CYPARISSIAS	CYPRESS SPURGE	P-FORB	5	UPL	EUPHORBIACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	w	Wet	Family
EUPESU	*	EUPHORBIA ESULA	LEAFY SPURGE	P-FORB	5	UPL	EUPHORBIACEAE
EUPHEL	-	EUPHORBIA HELIOSCOPIA	SUN SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
EUPHEX	*	EUPHORBIA HEXAGONA	ANGLED SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
EUPLAT	*	EUPHORBIA LATHYRIS	CAPER SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
EUPMAR	*	EUPHORBIA MARGINATA	SNOW-ON-THE-MOUNTAIN	A-FORB	4	FACU-	EUPHORBIACEAE
EUPOBT	5	Euphorbia obtusata	BLUNT-LEAVED SPURGE	A-FORB	3	FACU	EUPHORBIACEAE
EUPPEP	*	EUPHORBIA PEPLUS	PETTY SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
EUPSPA	10	Euphorbia spathulata	SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
EUTGRA	3	Euthamia graminifolia	GRASS-LEAVED GOLDENROD	P-FORB	-2	FACW.	ASTERACEAE
EUTGYM	5	Euthamia gymnospermoides	VISCID GRASS-LEAVED GOLDENROD	P-FORB	-1	FAC +	ASTERACEAE
EVOPIL	*	EVOLVULUS PILOSUS	OZARK MORNING-GLORY	P-FORB	5	UPL	CONVOLVULACEAE
FAGESC	*	FAGOPYRUM ESCULENTUM	BUCKWHEAT	A-FORB	5	UPL	POLYGONACEAE
FAGGRA	B	Fagus grandifolia	AMERICAN BEECH	TREE	3	FACU	FAGACEAE
FALVUL	-	FALCARIA VULGARIS	SICKLEWEED	P-FORB	5	UPL	APIACEAE
FESARU	*	FESTUCA ARUNDINACEA	TALL FESCUE	P-GRASS	2	FACU +	POACEAE
FESDUR	*	FESTUCA DURIUSCULA	SHEEP FESCUE	P-GRASS	5	UPL	POACEAE
FESOBT	5	Festuca obtusa	NODDING FESCUE	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
FESPAR	6	Festuca paradoxa	GREATER NODDING FESCUE	P-GRASS	0	FAC	POACEAE
FESPRA	-	FESTUCA PRATENSIS	MEADOW FESCUE	P-GRASS	4	FACU-	POACEAE
FESRUB	*	FESTUCA RUBRA	RED FESCUE	P-GRASS	1	FAC-	POACEAE
FESTEN	*	FESTUCA TENUIFOLIA	SLENDER FESCUE	P-GRASS	5	UPL	POACEAE
FILRUB	10	Filipendula rubra	QUEEN OF THE PRAIRIE	P-FORB	-4	FACW +	ROSACEAE
FILULM	.	FILIPENDULA ULMARIA	QUEEN OF THE MEADOW	P-FORB	5	UPL	ROSACEAE
FIMANN	6	Fimbristylis annua	BALOWIN'S FIMBRISTYLIS	A.SEDGE	4	FACU.	CYPERACEAE
FIMAUT	- 6	Fimbristylis autumnatis	AUTUMN SEDGE	A-SEDGE	-4	FACW +	CYPERACEAE
FIMPUB	9	Fimbristylis puberula v. drummondii	CHESTNUT SEDGE	P-SEDGE	5	UPL	CYPERACEAE
FIMVAH	9	Fimbristylis vahlii	VAHL'S FIMBRISTYLIS	A-SEDGE	- 5	OBL	CYPERACEAE
FLOPRO	7	Floerkea proserpinacoides	FALSE MERMAID	A-FORB	-1	FAC +	LIMNANTHACEAE
FoEVUL	*	FOENICULUM VULGARE	FENNEL	P-FORB	5	UPL	APIACEAE
FORACU	6	Forestiera acuminata	SWAMP PRIVET	TREE	- 5	OBL	OLEACEAE
FRAAMR	B	Fragaria americana	HILLSIDE STRAWBERRY	P-FORB	5	UPL	ROSACEAE
FraANA	-	FRAGARIA \times ANANASSA	CULTIVATED STRAWBERRY	P-FORB	5	UPL	ROSACEAE
FRAVES	*	FRAGARIA VESCA	STRAWBERRY	P-FORB	5	UPL	ROSACEAE
FRAVIR	2	Fragaria virginiana	WILD STRAWBERRY	P-FORB	1	FAC-	ROSACEAE
FRACAR	B	Frasera caroliniensis	AMERICAN COLUMBO	B-FORB	5	UPL	GENTIANACEAE
FRAAMC	4	Fraxinus americana	WHITE ASH	TREE	3	FACU	OLEACEAE
FRANIG	8	Fraxinus nigra	BLACK ASH	TREE	-4	FACW +	OLEACEAE
FRAPEP	5	Fraxinus pennsylvanica	RED ASH	TREE	-3	FACW	OLEACEAE
FRAPES	2	Fraxinus pennsylvanica v. subintegerrima	GREEN ASH	TREE	-3	FACW	OLEACEAE
FRAPRO	8	Fraxinus profunda	PUMPKIN ASH	TREE	- 5	OBL	OLEACEAE
FRAQUA	6	Fraxinus quadrangulata	BLUE ASH	TREE	5	UPL	OLEACEAE
FROFLO	5	Froelichia floridana v. campestris	COTTONWEED	A-FORB	5	UPL	AMARANTHACEAE
FROGRA	-	FROELICHIA GRACILIS	COTTONWEED	A-FORB	5	UPL	AMARANTHACEAE

Family
CYPERACEAE
PAPAVERACEAE PAPAVERACEAE ASTERACEAE

U
U
U
岂
L

岂

 ヨ $\exists \exists コ \forall \& 5 \forall N O$ ONAGRACEAE ONAGRACEAE ONAGRACEAE ERICACEAE GENTIANACEAE

 GENTIANACEAE
 GENTIANACEAE GENTIANACEAE

 Physiognomy
P－SEDGE
A－FORB
B－FORB
P－FORB
A－FORB
H－VINE
H－VINE
P－FORB A－FORB A－FORB A－FORB A－FORB P－FORB P－FORB P－FORB －FORB P－FORB P－FORB P－FORB － A－FORB P－FORB P－FORB P－FORB A－FORB SHRUB B－FORB P－FORB B－FORB $\stackrel{\infty}{0}$ SHRUB
P－FORB P－FORB P－FORB P－FORB P－FORB P－FORB A－FORB A－FORB Common Name
UMBRELLA GRASS FUMITORY PERENNIAL GAILLARDIA COMMON PERENNIAL GAILLARDIA FIREWHEELS
BOYKIN＇S DIOCLEA MILK PEA
SHOWY ORCHIS RED HEMP NETTLE COMMON HEMP NETTLE SMOOTH PERUVIAN DAISY PERUVIAN DAISY
ANNUAL BEDSTRAW ROUGH BEDSTRAW NORTHERN BEDSTRAW WILD LICORICE
SHINING BEDSTRAW BOG BEDSTRAW LANCE－LEAVED WILD LICORICE WHITE BEDSTRAW WILD MADDER FOOTHILL BEDSTRA HAIRY BEDSTRAW STIFF BEDSTRAW SMALL BEDSTRAW SWEET－SCENTED BEDSTRAW YELLOW BEDSTRAW DWARF BEDSTRAW BIENNIAL GAURA SLENDER GAURA SLENDER GAURA
COMMON GAURA SMALL－FLOWERED GAURA SMALL－FLOWERED GAURA
BLACK HUCKLEBERRY PALE GENTIAN CLOSED GENTIAN
CLOSED GENTIAN CLOSED GENTIAN
DOWNY GENTIAN SOAPWORT GENTIAN GARDEN GENTIAN STIFF GENTIAN FRINGED GENTIAN NVIINヨS GヨפNIyd 77VWS
APPENDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
GERBIC	9	Geranium bicknellii	NORTHERN CRANESBILL	A-FORB	5	UPL	GERANIACEAE
GERCAR	2	Geranium carolinianum	CAROLINA CRANESBILL	A-FORB	5	UPL	GERANIACEAE
GERDIS	*	GERANIUM DISSECTUM	WRINKLE-SEEDED CRANESBILL	A-FORB	5	UPL	GERANIACEAE
GERMAC	4	Geranium maculatum	WILD GERANIUM	P-FORB	3	FACU	GERANIACEAE
GERPUS	*	GERANIUM PUSILLUM	SMALL GERANIUM	A-FORB	5	UPL	GERANIACEAE
GERROB	9	Geranium robertianum	HERB ROBERT	A-FORB	5	UPL	GERANIACEAE
GERSAN	.	GERANIUM SANGUINEUM	BLOOD-RED CRANESBILL	P-FORB	5	UPL	GERANIACEAE
GERSIB	*	GERANIUM SIBIRICUM	SIBERIAN CRANESBILL	P-FORB	5	UPL	GERANIACEAE
GEUALE	6	Geum aleppicum	YELLOW AVENS	P-FORB	-1	$\mathrm{FAC}+$	ROSACEAE
GEUCAN	2	Geum canadense	WHITE AVENS	P-FORB	0	FAC	ROSACEAE
GEULAC	2	Geum laciniatum	ROUGH AVENS	P-FORB	-3	FACW	ROSACEAE
GEURIV	10	Geum rivale	PURPLE AVENS	P-FORB	-5	OBL	ROSACEAE
GEUTRI	9	Geum triflorum	PRAIRIE AVENS	P-FORB	4	FACU-	ROSACEAE
GEUVER	1	Geum vernum	SPRING AVENS	P-FORB	1	FAC-	ROSACEAE
GEUVIR	7	Geum virginianum	PALE AVENS	P-FORB	4	FACU.	ROSACEAE
GILCAP	*	GILIA CAPITATA	GILIA	A-FORB	5	UPL	POLEMONIACEAE
GLACOL	*	GLADIOLUS \times COLVILLEI	SCARLET GLADIOLUS	P-FORB	5	UPL	IRIDACEAE
GLACAN	7	Glandularia canadensis	ROSE VERBENA	P-FORB	5	UPL	VERBENACEAE
GLAPER	*	GLANDULARIA PERUVIANA	PERUVIAN VERVAIN	P-FORB	5	UPL	VERBENACEAE
GLEHED	*	GLECHOMA HEDERACEA	GROUND IVY	P-FORB	3	FACU	LAMIACEAE
GLEAQU	9	Gleditsia aquatica	WATER LOCUST	TREE	-5	OBL	CAESALPINIACEAE
GLETRI	2	Gleditsia triacanthos	HONEY LOCUST	TREE	0	FAC	CAESALPINIACEAE
GLYARK	10	Glyceria arkansana	MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYBOR	10	Glyceria borealis	NORTHERN MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYCAN	. 10	Glyceria canadensis	RATTLESNAKE MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYGRA	B	Glyceria grandis	REED MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYSEP	6	Glyceria septentrionalis	FLOATING MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYSTR	4	Glyceria striata	FOWL MANNA GRASS	P-GRASS	-5	OBL	POACEAE
GLYMAX	*	GLYCINE MAX	SOYBEAN	A-FORB	5	UPL	FABACEAE
GLYLEP	*	GLYCYRRHIZA LEPIDOTA	WILD LICORICE	P-FORB	4	FACU-	FABACEAE
GNAOBT	2	Gnaphalium obtusifolium	OLD-FIELD BALSAM	B-FORB	5	UPL	ASTERACEAE
GNAPUR	2	Gnaphalium purpureum	EARLY CUDWEED	A-FORB	3	FACU	ASTERACEAE
GNAULI	*	GNAPHALIUM ULIGINOSUM	LOW CUDWEED	A-FORB	0	FAC	ASTERACEAE
GNAVIS	10	Gnaphalium viscosum	CLAMMY CUDWEED	B-FORB	5	UPL	ASTERACEAE
GOOPUB	7	Goodyera pubescens	RATTLESNAKE PLANTAIN	P-FORB	0	FAC	ORCHIDACEAE
GOSHIR	*	GOSSYPIUM HIRSUTUM	COTTON	A-FORB	5	UPL	MALVACEAE
GRAAUR	10	Gratiola aurea	GOLDENPERT	P-FORB	-5	OBL	SCROPHULARIACEAE
GRANEG	5	Gratiola neglecta	CLAMMY HEDGE HYSSOP	A-FORB	-5	OBL	SCROPHULARIACEAE
GRAVIR	5	Gratiola virginiana	ROUND-FRUITED HEDGE HYSSOP	A-FORB	-5	OBL	SCROPHULARIACEAE
GRISQU	-	GRINDELIA SQUARROSA	GUM PLANT	B-FORB	3	FACU	ASTERACEAE
GUTTEX	*	GUTIERREZIA TEXANA	BROOMWEED	A-FORB	5	UPL	ASTERACEAE
GYMDRY	10	Gymnocarpium dryopteris	OAK FERN	FERN	0	FAC	ASPLENIACEAE
GYMROB	10	Gymnocarpium robertianum	SCENTED OAK FERN	FERN	3	FACU	ASPLENIACEAE

APPI:NDIX: Vegetation of Illinois Database

Common Name	Physiognomy	W	Wet	Family
KENTUCKY COFFEE TREE	TREE	5	UPL	CAESALPINIACEAE
BEARD GRASS	P-GRASS	5	UPL	POACEAE
BABY'S BREATH	A-FORB	5	UPL	CARYOPHYLLACEAE
COMMON BABY'S BREATH	P-FORB	5	UPL	CARYOPHYLLACEAE
BIG BABY'S BREATH	P-FORB	5	UPL	CARYOPHYLLACEAE
STICKSEED	P-FORB	5	UPL	BORAGINACEAE
STICKSEED	P-FORB	1	FAC-	BORAGINACEAE
SILVERBELL TREE	TREE	2	$\mathrm{FACU}+$	STYRACACEAE
WITCH HAZEL	SHRUB	3	FACU	HAMAMELIDACEAE
ROUGH PENNYROYAL	A-FORB	5	UPL	LAMIACEAE
AMERICAN PENNYROYAL	A-FORB	5	UPL	LAMIACEAE
ENGLISH IVY	W-VINE	5	UPL	ARALIACEAE
BLUETS	P-FORB	0	FAC	RUBIACEAE
TINY BLUETS	P-FORB	4	FACU-	RUBIACEAE
LONG-LEAVED BLUETS	P-FORB	5	UPL	RUBIACEAE
NARROW-LEAVED BLUETS	P-FORB	5	UPL	RUBIACEAE
SLENDER-LEAVED BLUETS	P-FORB	5	UPL	RUBIACEAE
BROAD-LEAVED BLUETS	P-FORB	5	UPL	RUBIACEAE
BROAD-LEAVED BLUETS	P-FORB	5	UPL	RUBIACEAE
SMALL BLUETS	A-FORB	5	UPL	RUBIACEAE
BITTERWEED	A-FORB	3	FACU	ASTERACEAE
SNEEZEWEED	P-FORB	-4	FACW +	ASTERACEAE
PURPLE-HEADED SNEEZEWEED	P-FORB	-1	$\mathrm{FAC}+$	ASTERACEAE
ROCKROSE	P-FORB	5	UPL	CISTACEAE
COMMON ROCKROSE	P-FORB	5	UPL	CISTACEAE
NARROW-LEAVED SUNFLOWER	P-FORB	-2	FACW-	ASTERACEAE
COMMON SUNFLOWER	A.FORB	1	FAC-	ASTERACEAE
BLUEWEED SUNFLOWER	A-FORB	5	UPL	ASTERACEAE
PALE SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
WOODLAND SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
TALL SUNFLOWER	P-FORB	-3	FACW	ASTERACEAE
SAWTOOTH SUNFLOWER	P-FORB	-2	FACW-	ASTERACEAE
BRISTLY SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
MAXIMILIAN'S SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
SMALL WOOD SUNFLOWER	P-FORB	4	FACU.	ASTERACEAE
DOWNY SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
WESTERN SUNFLOWER	P-FORB	4	FACU.	ASTERACEAE
PETIOLED SUNFLOWER	A-FORB	5	UPL	ASTERACEAE
PRAIRIE SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
WILLOW-LEAVED SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
FALSE ROSIN WEED	P-FORB	0	FAC	ASTERACEAE
PALE-LEAVED SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
JERUSALEM ARTICHOKE	P-FORB	0	FAC	ASTERACEAE

Acronym	CC	Scientific Name
GYMDIO	6	Gymnocladus dioica
GYMAMB	10	Gymnopogon ambiguus
GYPELE	*	GYPSOPHILA ELEGANS
GYPPAN	*	GYPSOPHILA PANICULATA
GYPSCO	*	GYPSOPHILA SCORZONERIFOLIA
HACDEF	8	Hackelia deflexa v. americana
HACVIR	1	Hackelia virginiana
HALCAR	10	Halesia carolina
HAMVIR	8	Hamamelis virginiana
HEDHIS	2	Hedeoma hispida
HEDPUL	4	Hedeoma pulegioides
HEDHEL	*	HEDERA HELIX
HEDCAE	7	Hedyotis caerulea
HEDCRA	3	Hedyotis crassifolia
HEDLON	7	Hedyotis longifolia
HEDNIG	7	Hedyotis nigricans
HEDNUT	7	Hedyotis nuttalliana
HEDPUP	10	Hedyotis purpurea
HEDPUC	6	Hedyotis purpurea v. calycosa
HEDPUS	3	Hedyotis pusilla
HELAMA	0	Helenium amarum
HELAUT	3	Helenium autumnale
HELFLE	4	Helenium flexuosum
HELBIC	7	Helianthemum bicknellii
HELCAN	7	Helianthemum canadense
HELANG	10	Helianthus angustifolius
HELANN	*	HELIANTHUS ANNUUS
HELCIL	*	HELIANTHUS CILIARIS
HELDEC	5	Helianthus decapetalus
HELDIV	5	Helianthus divaricatus
HELGIG	9	Helianthus giganteus
HELGRO	2	Helianthus grosseserratus
HELHIR	5	Helianthus hirsutus
HELMAX	-	HELIANTHUS MAXIMILIANII
HELMIC	8	Helianthus microcephalus
HELMOL	7	Helianthus mollis
HELOCC	7	Helianthus occidentalis
HELPET	*	HELIANTHUS PETIOLARIS
HELRIG	6	Helianthus rigidus
HELSAL	*	HELIANTHUS SALICIFOLIUS
HELSIL	10	Helianthus sitphoides
HELSTR	3	Helianthus strumosus
HELTUB	3	Helianthus tuberosus

AppENDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
HELHEL	4	Heliopsis helianthoides	FALSE SUNFLOWER	P-FORB	5	UPL	ASTERACEAE
HELCUR	*	HELIOTROPIUM CURASSAVICUM	SEASIDE HELIOTROPE	A-FORB	-5	OBL	BORAGINACEAE
HELEUR	*	HELIOTROPIUM EUROPAEUM	EUROPEAN HELIOTROPE	A-FORB	5	UPL	BORAGINACEAE
HELIND	*	HELIOTROPIUM INDICUM	INDIAN HELIOTROPE	A-FORB	-3	FACW	BORAGINACEAE
HELTEN	10	Heliotropium tenellum	SLENDER HELIOTROPE	A-FORB	5	UPL	BORAGINACEAE
HELVIR	*	HELLEBORUS VIRIDIS	GREEN HELLEBORE	P-FORB	5	UPL	RANUNCULACEAE
HEMFUL	*	HEMEROCALLIS FULVA	ORANGE DAY LILY	P-FORB	5	UPL	LILIACEAE
HEMLIL	*	HEMEROCALLIS LILIO-ASPHODELUS	LEMON DAY LILY	P-FORB	5	UPL	LILIACEAE
HEPNOA	7	Hepatica nobilis v. acuta	SHARP-LOBED HEPATICA	P-FORB	5	UPL	RANUNCULACEAE
HEPNOO	10	Hepatica nobilis v. obtusa	ROUND-LEAVED HEPATICA	P-FORB	5	UPL	RANUNCULACEAE
HERLAN	6	Heracleum lanatum	COW PARSNIP	P-FORB	-3	FACW	APIACEAE
HESMAT	*	HESPERIS MATRONALIS	DAME'S ROCKET	P-FORB	5	UPL	BRASSICACEAE
HETLIM	9	Heteranthera limosa	DUCK SALAD	P-FORB	-5	OBL	PONTEDERIACEAE
HETREN	9	Heteranthera reniformis	MUD PLANTAIN	P-FORB	-5	OBL	PONTEDERIACEAE
HETCAM	5	Heterotheca camporum	GOLDEN ASTER	P-FORB	5	UPL	ASTERACEAE
HETLAT	2	Heterotheca latifolia	CAMPHORWEED	A.FORB	4	FACU-	ASTERACEAE
HEUAME	7	Heuchera americana v. hirsuticaulis	TALL ALUMROOT	P-FORB	4	FACU-	SAXIFRAGACEAE
HEUPAR	8	Heuchera parviflora v. rugelii	LATE ALUMROOT	P-FORB	5	UPL	SAXIFRAGACEAE
HEURIC	7	Heuchera richardsonii v. grayana	PRAIRIE ALUMROOT	P-FORB	1	FAC-	SAXIFRAGACEAE
HEXSPI	10	Hexalectris spicata	CRESTED CORAL ROOT	P-FORB	5	UPL	ORCHIDACEAE
HIBLAE	4	Hibiscus laevis	HALBERD-LEAVED ROSE MALLOW	P-FORB	-5	OBL	MALVACEAE
HIBLAS	5	Hibiscus lasiocarpus	HAIRY ROSE MALLOW	P-FORB	-4	FACW +	MALVACEAE
HIBMOS	6	Hibiscus moscheutos	SWAMP ROSE MALLOW	P-FORB	-5	OBL	MALVACEAE
HIBSYR	*	HIBISCUS SYRIACUS	ROSE-OF-SHARON	SHRUB	5	UPL	MALVACEAE
HIBTRI	*	HIBISCUS TRIONUM	FLOWER-OF-AN-HOUR	A-FORB	5	UPL	MALVACEAE
HIEAUR	*	HIERACIUM AURANTIACUM	DEVIL'S PAINT BRUSH	P-FORB	5	UPL	ASTERACEAE
HIECAE	*	HIERACIUM CAESPITOSUM	FIELD HAWKWEED	P-FORB	5	UPL	ASTERACEAE
HIECAN	5	Hieracium canadense	CANADA HAWKWEED	P-FORB	5	UPL	ASTERACEAE
HIEFLO	-	HIERACIUM FLORENTINUM	KING DEVIL	P-FORB	5	UPL	ASTERACEAE
HIEGRO	5	Hieracium gronovii	HAIRY HAWKWEED	P-FORB	5	UPL	ASTERACEAE
HIELON	6	Hieracium longipilum	LONG-BEARDED HAWKWEED	P-FORB	5	UPL	ASTERACEAE
HIEMUR	*	HIERACIUM MURORUM	GOLDEN LUNGWORT	P-FORB	5	UPL	ASTERACEAE
HIESCA	5	Hieracium scabrum	ROUGH HAWKWEED	P-FORB	5	UPL	ASTERACEAE
HIEODO	7	Hierochloe odorata	SWEET GRASS	P-GRASS	-3	FACW	POACEAE
HIPVUL	10	Hippuris vulgaris	MARE'S TAIL	P-FORB	-5	OBL	HIPPURIDACEAE
HOLLAN	*	HOLCUS LANATUS	VELVET GRASS	P-GRASS	4	FACU-	POACEAE
HOLUMB	*	HOLOSTEUM UMBELLATUM	JAGGED CHICKWEED	A-FORB	5	UPL	CARYOPHYLLACEAE
HORBRA	*	HORDEUM BRACHY ANTHERUM	MEADOW BARLEY	P-GRASS	-2	FACW.	POACEAE
HORGEN	*	HORDEUM GENICULATUM	KNEE BARLEY	P-GRASS	5	UPL	POACEAE
HORJUB	*	HORDEUM JUBATUM	SQUIRREL-TAIL GRASS	P-GRASS	-1	$\mathrm{FAC}+$	POACEAE
HORPUS	0	Hordeum pusillum	LITTLE BARLEY	A-GRASS	0	FAC	POACEAE
HORVUL	*	HORDEUM VULGARE	COMMON BARLEY	A-GRASS	5	UPL	POACEAE
HOSAME	$*$	HOSACKIA AMERICANA	DEER VETCH	A-FORB	5	UPL	FABACEAE

HOSLAN	*	hosta lancifolia
HOTINF	9	Hottonia inflata
HUDTOM	9	Hudsonia tomentosa
HUMJAP	-	HUMULUS JAPONICUS
HUMLUP	2	Humulus lupulus
HYBCON	7	Hybanthus concolor
HYDARB	6	Hydrangea arborescens
HYDCAS	7	Hydrastis canadensis
HYDRAN	5	Hydrocotyle ranunculoides
HYOUNI	9	Hydrolea uniflora
HYDAPP	6	Hydrophyllum appendiculatum
HYDCAE	6	Hydrophyllum canadense
HYDMAC	7	Hydrophyllum macrophyllum
HYDVIR	5	Hydrophyllum virginianum
HYMCAR	9	Hymenocallis caroliniana
HYMSCA	9	Hymenopappus scabiosaeus
HYMACA	10	Hymenoxys acaulis v.glabra
HYONIG	-	HYOSCYAMUS NIGER
HYPADP	9	Hypericum adpressum
HYPBOR	10	Hypericum boreale
HYPCAN	8	Hypericum canadense
HYPDES	10	Hypericum densiflorum
HYPDET	9	Hypericum denticulatum
HYPDRU	6	Hypericum drummondii
HYPELL	5	Hypericum ellipticum
HYPGEN	6	Hypericum gentianoides
HYPGYM	9	Hypericum gymnanthum
HYPHYP	9	Hypericum hypericoides
HYPKAL	10	Hypericum kalmianum
HYPLOB	10	Hypericum lobocarpum
HYPMAJ	7	Hypericum majus
HYPMUT	5	Hypericum mutilum
HYPPER	-	HYPERICUM PERFORATUM
HYPPRO	6	Hypericum prolificum
HYPPSE	7	Hypericum pseudomaculatum
HYPPUN	3	Hypericum punctatum
HYPPYR	B	Hypericum pyramidatum
HYPSPH	5	Hypericum sphaerocarpum
HYPSTR	8	Hypericum stragulum
HYPGLA	-	HYPOCHAERIS GLABRA
HYPRAD	-	HYPOCHAERIS RADICATA
HYPHIR	6	Hypoxis hirsuta
ILEDEC	6	llex decidua

COMmOn Name
AMERICAN HOLLY
WINTERBERRY
KANKAKEE MALLOW
SPOTTED TOUCH-ME-NOT
PALE TOUCH-ME-NOT
ELECAMPANE
VIOLET CRESS
RED MORNING GLORY
IVY-LEAVED MORNING GLORY
SMALL MORNING GLORY
WILD SWEET POTATO
COMMON MORNING GLORY
STANDING CYPRESS
BLOODLEAF
BLUE WATER IRIS
DWARF CRESTED IRIS
PALE YELLOW IRIS
COPPER IRIS
GERMAN IRIS
TALL YELLOW IRIS
DWARF IRIS
SOUTHERN BLUE FLAG
DYER'S WOAD
GLADE QUILLWORT
ENGELMANN'S QUILLWORT
BLACK QUILLWORT
FALSE RUE ANEMONE
SMALL WHORLED POGONIA
FIVE LEAVES
VIRGINIA WILLOW
MARSH ELDER
RAG SUMPWEED
TIE VINE
TWINLEAF
BUTTERNUT
BLACK WALNUT
SHARP-FRUITED RUSH
RICHARDSON'S RUSH
JOINTED RUSH
LAKE SHORE RUSH
TWO-FLOWERED RUSH
SHORT-FRUITED RUSH
SHORT-HEADED RUSH
SH

Acronym	cc	Scientific Name	Common Name
JUNBUF	2	Juncus bufonius	TOAD RUSH
JUNCAN	6	Juncus canadensis	CANADIAN RUSH
JUNDIF	7	Juncus diffusissimus	SLIMPOD RUSH
JUNDUD	4	Juncus dudleyi	DUDLEY'S RUSH
JUNEFS	4	Juncus effusus v. solutus	COMMON RUSH
JUNGER	*	JUNCUS GERARDII	BLACK GRASS
JUNGRE	7	Juncus greenei	GREENE'S RUSH
JUNINT	3	Juncus interior	INLAND RUSH
JUNMAR	5	Juncus marginatus	GRASS-LEAVED RUSH
JUNNOT	6	Juncus nodatus	STOUT RUSH
JUNNOS	6	Juncus nodosus	JOINT RUSH
JUNSCI	9	Juncus scirpoides	ROUND-HEADED RUSH
JUNSEC	6	Juncus secundus	SIDE-FLOWERING RUSH
JUNTEN	0	Juncus tenuis	PATH RUSH
JUNTOR	3	Juncus torreyi	TORREY'S RUSH
JUNVAS	10	Juncus vaseyi	VASEY'S RUSH
JUNCOC	10	Juniperus communis	COMMON JUNIPER
JUNCOD	10	Juniperus communis v. depressa	COMMON JUNIPER
JUNHOR	10	Juniperus horizontalis	TRAILING JUNIPER
JUNVIR	1	Juniperus virginiana	EASTERN RED CEDAR
JUSAME	6	Justicia americana	WATER WILLOW
JUSOVA	10	Justicia ovata	WATER WILLOW
KALPAR	*	KALLSTROEMIA PARVIFLORA	HAIRY CALTROP
KERJAP	*	KERRIA JAPONICA	YELLOW ROSE
KICELA	-	KICKXIA ELATINE	FLUELLIN
KNAARV	*	KNAUTIA ARVENSIS	BLUE BUTTONS
KOCSCO	*	KOCHIA SCOPARIA	BELVEDERE SUMMER CYPRESS
KOEMAC	7	Koeleria macrantha	JUNE GRASS
KOEPAN	*	KOELREUTERIA PANICULATA	GOLDEN-RAIN TREE
KRIBIF	5	Krigia biflora	FALSE DANDELOIN
KRICAE	1	Krigia caespitosa	DWARF DANDELION
KRIDAN	6	Krigia dandelion	DWARF DANDELION
KRIVIR	4	Krigia virginica	DWARF DANDELION
KUMST1	*	KUMMEROWIA STIPULACEA	Korean clover
KUMSTR	*	KUMMEROWIA STRIATA	JAPANESE LESPEDEZA
LACBIE	4	Lactuca biennis	TALL BLUE LETTUCE
LACCAN	1	Lactuca canadensis	WILD LETTUCE
LACFLO	4	Lactuca floridana	blUE LETTUCE
LACHIR	7	Lactuca hirsuta v. sanguinea	HAIRY WILD LETTUCE
LACLUD	10	Lactuca ludoviciana	WESTERN WILD LETTUCE
LACSAL	*	LACTUCA SALIGNA	WILLOW-LEAVED LETTUCE
LACSAT	*	LACTUCA SATIVA	CULTIVATED LETTUCE
LACSER	*	LACTUCA SERRIOLA	PRICKLY LETTUCE

Acronym	CC	Scientific Name	Common Name
LACTAT	-	LACTUCA TATARICA	SHOWY BLUE LETTUCE
LAGSIC	*	LAGENARIA SICERARIA	GOURD
LAMAMP	-	LAMIUM AMPLEXICAULE	HENBIT
LAMMAC	*	LAMIUM MACULATUM	SPOTTED DEAD NETTLE
LAMPUR	*	LAMIUM PURPUREUM	PURPLE DEAD NETTLE
LAPCAN	2	Laportea canadensis	CANADA WOOD NETTLE
LAPECH	-	LAPPULA ECHINATA	BEGGAR'S LICE
LAPRED	-	LAPPULA REDOWSKII v. OCCIDENTALIS	WESTERN BEGGAR'S LICE
LAPCOM	*	LAPSANA COMMUNIS	COMMON NIPPLEWORT
LARDEC	-	LARIX DECIDUA	EUROPEAN LARCH
LARLAR	10	Larix laricina	AMERICAN LARCH
LATHIR	*	LATHYRUS HIRSUTUS	CALEY PEA
LATJAP	10	Lathyrus japonicus v. glaber	BEACH PEA
LATLAT	-	LATHYRUS LATIFOLIUS	EVERLASTING PEA
LATOCH	8	Lathyrus ochroleucus	PALE VETCHLING
LATODO	-	LATHYRUS ODORATUS	SWEET PEA
LATPAP	7	Lathyrus palustris	MARSH VETCHLING
LATPAM	6	Lathyrus palustris v. myrtifolius	MARSH VETCHLING
LATPRA	-	LATHYRUS PRATENSIS	YELLOW VETCHLING
LATTUB	-	LATHYRUS TUBEROSUS	DUTCH MICE
LATVEN	9	Lathyrus venosus v. intonsus	VEINY PEA
LECINT	10	Lechea intermedia	SAVANNA PINWEED
LECMIN	8	Lechea minor	SMALL PINWEED
LECPUL	7	Lechea pulchella	PRETTY PINWEED
LECSTR	B	Lechea stricta	BUSHY PINWEED
LECTEN	6	Lechea tenuifolia	NARROW-LEAVED PINWEED
LECVIL	7	Lechea villosa	HAIRY PINWEED
LEELEN	5	Leersia lenticularis	CATCHFLY GRASS
LEEORY	3	Leersia oryzoides	RICE CUT GRASS
LEEVIR	4	Leersia virginica	WHITE GRASS
LEMGIB	10	Lemna gibba	SWOLLEN DUCKWEED
LEMMIR	3	Lemna minor	SMALL DUCKWEED
LEMMIT	5	Lemna minuta	DINKY DUCKWEED
LEMOBS	5	Lemna obscura	PURPLE DUCKWEED
LEMPER	8	Lemna perpusilla	LEAST DUCKWEED
LEMTRN	5	Lemna trinervis	THREE-NERVED DUCKWEED
LEMTRS	8	Lemna trisulca	FORKED DUCKWEED
LEMVAL	5	Lemna valdiviana	PALE DUCKWEED
leoaut	-	LEONTODON AUTUMNALIS	FALL DANDELION
LEOTAR	*	LEONTODON TARAXACOIDES	HAWKBIT
LEOCAR	*	LEONURUS CARDIACA	MOTHERWORT
LEOMAR	*	LEONURUS MARRUBIASTRUM	LION'S TAIL
LEOSIB	-	LEONURUS SIBIRICUS	SIBERIAN LION'S TAIL

Acronym	CC	Scientific Name	Common Name	Physiognomy	w	Wet	Family
LEPCAM	-	LEPIDIUM CAMPESTRE	FIELD CRESS	B-FORB	5	UPL	BRASSICACEAE
LEPDEN	-	LEPIDIUM DENSIFLORUM	SMALL PEPPERGRASS	A-FORB	0	FAC	BRASSICACEAE
LEPLAT	-	LEPIDIUM LATIFOLIUM	BROAD-LEAVED PEPPERCRESS	A-FORB	5	UPL	BRASSICACEAE
LEPPER		LEPIDIUM PERFOLIATUM	CLASPING CRESS	P-FORB	0	FAC	BRASSICACEAE
LEPRUD		LEPIDIUM RUDERALE	FETID PEPPERGRASS	A-FORB	5	UPL	BRASSICACEAE
LEPSAT	-	LEPIDIUM SATIVUM	GARDEN CRESS	A-FORB	5	UPL	BRASSICACEAE
LEPVIR	0	Lepidium virginicum	COMMON PEPPERGRASS	A-FORB	4	FACU-	BRASSICACEAE
LEPACU	*	LEPTOCHLOA ACUMINATA	SALT MEADOW GRASS	A-GRASS	0	FAC	POACEAE
LEPATT	7	Leptochloa attenuata	SPRANGLE TOP	A-GRASS	-4	FACW +	POACEAE
LEPFAS	0	Leptochloa fascicularis	BEARDED SPRANGLE TOP	A-GRASS	-5	OBL	POACEAE
LEPFIL	5	Leptochloa filiformis	RED SPRANGLE TOP	A-GRASS	-4	FACW +	POACEAE
LEPPAN	9	Leptochloa panicoides	SALT MEADOW GRASS	A-GRASS	-5	OBL	POACEAE
LEPUNI	*	LEPTOCHLOA UNINERVIA	MEXICAN SPRANGLETOP	A-GRASS	5	UPL	POACEAE
LEPCOG	4	Leptoloma cognatum	FALL WITCH GRASS	P-GRASS	5	UPL	POACEAE
LESBIC	*	LESPEDEZA BICOLOR	BICOLOR LESPEDEZA	SHRUB	5	UPL	FABACEAE
LESCAP	4	Lespedeza capitata	ROUND-HEADED BUSH CLOVER	P-FORB	3	FACU	FABACEAE
LESCUN	*	LESPEDEZA CUNEATA	SILKY BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESDAU	*	LESPEDEZA DAURICA	ASIAN LESPEDEZA	P-FORB	5	UPL	FABACEAE
LESHIR	6	Lespedeza hirta	HAIRY BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESINT	6	Lespedeza intermedia	WAND-LIKE BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESLEP	10	Lespedeza leptostachya	PRAIRIE BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESPRO	5	Lespedeza procumbens	TRAILING BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESREP	6	Lespedeza repens	CREEPING BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESSTU	6	Lespedeza stuevei	STUVE'S BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESTHU	*	LESPEDEZA THUNBERGII	SHRUBBY BUSH CLOVER	SHRUB	5	UPL	FABACEAE
LESVIO	5	Lespedeza violacea	VIOLET BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESVIR	5	Lespedeza virginica	SLENDER BUSH CLOVER	P-FORB	5	UPL	FABACEAE
LESGRA	-	LESQUERELLA GRACILIS	SLENDER BLADDER POD	A-FORB	5	UPL	BRASSICACEAE
LESLUD	10	Lesquerella ludoviciana	SILVERY BLADDERPOD	P-FORB	5	UPL	BRASSICACEAE
LEUVUL	*	LEUCANTHEMUM VULGARE	OX-EYE DAISY	P-FORB	5	UPL	ASTERACEAE
LEUAES	*	LEUCOJUM AESTIVUM	SNOWFLAKE	P-FORB	5	UPL	LILIACEAE
LEUMUL	3	Leucospora multifida	OBE-WAN-CONOBEA	A-FORB	-4	FACW +	SCROPHULARIACEAE
LIAASP	7	Liatris aspera	ROUGH BLAZING STAR	P-FORB	5	UPL	AStERACEAE
LIACYL	8	Liatris cylindracea	CYLINDRICAL BLAZING STAR	P-FORB	5	UPL	ASTERACEAE
LIAPUN	*	LIATRIS PUNCTATA	DOTTED BLAZING STAR	P-FORB	5	UPL	AStERACEAE
LIAPYC	6	Liatris pycnostachya	PRAIRIE BLAZINE STAR	P-FORB	1	FAC-	AStERACEAE
LIASCS	8	Liatris scabra	HAIRY BLAZING STAR	P-FORB	5	UPL	ASTERACEAE
LIASCN	7	Liatris scariosa v. nieuwlandii	SAVANNA BLAZINE STAR	P-FORB	5	UPL	ASTERACEAE
LIASPI	7	Liatris spicata	MARSH BLAZING STAR	P-FORB	0	FAC	ASTERACEAE
LIASOS	7	Liatris squarrosa	BLAZING STAR	P-FORB	5	UPL	AStERACEAE
LIASQL	10	Liatris squarrulosa	SMOOTH BLAZING STAR	P-FORB	5	UPL	asteraceat
LIGOBT		LIGUSTRUM OBTUSIFOLIUM	BORDER PRIVET	SHRUB	5	UPL	OLEACEAE
LIGVUL	-	LIGUSTRUM VULGARE	COMMON PRIVET	SHRUB	5	UPL	OLEACEAE

Common Name	Physiognomy	W	Wet	Family
TIGER LIL.Y	P-FORB	5	UPL	LILIACEAE
MICHIGAN LILY	P-FORB	-1	FAC +	LILIACEAE
PRAIRIE LILY	P-FORB	1	FAC-	LILIACEAE
SUPERB LILY	P-FORB	5	UPL	LILIACEAE
FROG'S BIT	P-FORB	-5	OBL	HYDROCHARITACEAE
JOINTED COWBANE	A-FORB	-3	FACW	APIACEAE
BLUE TOADFLAX	A-FORB	5	UPL	SCROPHULARIACEAE
DALMATIAN TOADFLAX	P-FORB	5	UPL	SCROPHULARIACEAE
SMOOTH BLUE TOADFLAX	A-FORB	5	UPL	SCROPHULARIACEAE
BUTTER-AND-EGGS	A-FORB	5	UPL	SCROPHULARIACEAE
SPICEBUSH	SHRUB	-2	FACW.	LAURACEAE
HAIRY SPICEBUSH	SHRUB	-5	OBL	LAURACEAE
FALSE PIMPERNEL	A-FORB	-5	OBL	SCROPHULARIACEAE
SLENDER FALSE PIMPERNEL.	A-FORB	-5	OBL	SCROPHULARIACEAE
TWINFLOWER	SHRUB	0	FAC	CAPRIFOLIACEAE
SMALL YELLOW FLAX	P-FORB	3	FACU	LINACEAE
PERENNIAL FLAX	P-FORB	5	UPL	LINACEAE
STIFF YELLOW FLAX	P-FORB	-2	FACW.	LINACEAE
GROOVED YELLOW FLAX	P-FORB	5	UPL	LINACEAE
COMMON FLAX	A-FORB	5	UPL	LINACEAE
SLENDER YELLOW FLAX	P-FORB	-3	FACW	LINACEAE
PURPLE TWAYBLADE	P-FORB	4	FACU-	ORCHIDACEAE
GREEN TWAYBLADE	P-FORB	-4	FACW +	ORCHIDACEAE
MOTTLED LIPOCARPHA	A-SEDGE	- 5	OBL	CYPERACEAE
SWEET GUM	TREE	-3	FACW	HAMAMELIDACEAE
TULIP POPLAR	TREE	2	$\mathrm{FACU}+$	MAGNOLIACEAE
LILYTURF	P-FORB	5	UPL	LILIACEAE
HOARY PUCCOON	P-FORB	5	UPL	BORAGINACEAE
HAIRY PUCCOON	P-FORB	5	UPL	BORAGINACEAE
FRINGED PUCCOON	P-FORB	5	UPL	BORAGINACEAE
AMERICAN GROMWELL	P-FORB	5	UPL	BORAGINACEAE
COMMON GROMWELL	P-FORB	5	UPL	BORAGINACEAE
CARDINAL FLOWER	P-FORB	-5	OBL	CAMPANULACEAE
INDIAN TOBACCO	A-FORB	4	FACU.	CAMPANULACEAE
BOG LOBELIA	P-FORB	-5	OBL	CAMPANULACEAE
DOWNY LOBELIA	P-FORB	-5	OBL	CAMPANULACEAE
GREAT BLUE LOBELIA	P-FORB	-4	FACW +	CAMPANULACEAE
PALE SPIKED LOBELIA	P-FORB	0	FAC	CAMPANULACEAE
SWEET ALYSSUM	A-FORB	5	UPL	BRASSICACEAE
ITALIAN RYE GRASS	A-GRASS	5	UPL	POACEAE
PERENNIAL RYE GRASS	P-GRASS	3	FACU	POACEAE
DARNEL	A-GRASS	5	UPL	POACEAE
LIMBER HONEYSUCKLE	W-VINE	3	FACU	CAPRIFOLIACEAE

APPINDIX: Vegetation of Illinois Database

Physiognomy	W	Wet	Family
W-VINE	5	UPL	CAPRIFOLIACEAE
SHRUB	3	FACU	CAPRIFOLIACEAE LONFLA
W-VINE	5	UPL	CAPRIFOLIACEAE
W-VINE	5	UPL	CAPRIFOLIACEAE LONJAP
W-VINE	3	FACU	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE LONMOR
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	2	$\mathrm{FACU}+$	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
W-VINE	5	UPL	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	1	FAC-	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	3	FACU	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
SHRUB	5	UPL	CAPRIFOLIACEAE
P-FORB	1	FAC-	FABACEAE
P-FORB	-5	OBL	ONAGRACEAE
A-FORB	-5	OBL	ONAGRACEAE
P-FORB	-5	OBL	ONAGRACEAE
A-FORB	-5	OBL	ONAGRACEAE
P-FORB	-5	OBL	ONAGRACEAE
P-FORB	-5	OBL	ONAGRACEAE
P-FORB	-5	OBL	ONAGRACEAE
H-VINE	5	UPL	CUCURBITACEAE
A-FORB	5	UPL	BRASSICACEAE
P-FORB	5	UPL	FABACEAE
P-FORB	1	FAC-	JUNCACEAE
P-FORB	3	FACU	JUNCACEAE
P-FORB	3	FACU	JUNCACEAE
A-FORB	5	UPL	CARYOPHYLLACEAE
P-FORB	5	UPL	CARYOPHYLLACEAE
P-FORB	5	UPL	CARYOPHYLLACEAE
P-FORB	5	UPL	CARYOPHYLLACEAE
W-VINE	5	UPL	SOLANACEAE
W-VINE	5	UPL	SOLANACEAE
A-FORB	5	UPL	SOLANACEAE
FERN	0	FAC	LYCOPODIACEAE
FERN	0	FAC	LYCOPODIACEAE
FERN	0	FAC	LYCOPODIACEAE
FERN	5	UPL	LYCOPODIACEAE

Family	
LYCOPODIACEAE LYCINU LYCOPODIACEAE	
LYCOPODIACEAE	
LYCOPODIACEAE	
LAMIACEAE	
LILIACEAE	
PRIMULACEAE	
LYTHRACEAE	
LYTHRACEAE	
PAPAVERACEAE	
MORACEAE	
MAGNOLIACEAE	
LILIACEAE	
LILIACEAE	
ORCHIDACEAE	
ORCHIDACEAE	
BRASSICACEAE	
ROSACEAE	
	ROSACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
MALALC	*	MALVA ALCEA	VERVAIN MALLOW	P-FORB	5	UPL	MALVACEAE
MALMOS	*	MALVA MOSCHATA	MUSK MALLOW	P-FORB	5	UPL	MALVACEAE
MALNEG	-	MALVA NEGLECTA	CHEESES	B-FORB	5	UPL	MALVACEAE
MALROT	*	MALVA ROTUNDIFOLIA	DWARF MALLOW	B-FORB	5	UPL	MALVACEAE
MALSYL	*	MALVA SYLVESTRIS	HIGH MALLOW	B-FORB	5	UPL	MALVACEAE
MALVER	*	MALVA VERTICILLATA v. CRISPA	CURLED MALLOW	A-FORB	5	UPL	MALVACEAE
MANVIR	8	Manfreda virginica	FALSE ALOE	P-FORB	5	UPL	LILIACEAE
MARVUL	*	MARRUBIUM VULGARE	COMMON HOREHOUND	P-FORB	0	FAC	LAMIACEAE
MARQUA	*	MARSILEA QUADRIFOLIA	WATER CLOVER	P-FORB	-5	OBL	MARSILEACEAE
MATDEC	5	Matelea decipiens	CLIMBING MILKWEED	H-VINE	5	UPL	ASCLEPIADACEAE
MATGON	8	Matelea gonocarpa	CLIMBING MILKWEED	H-VINE	5	UPL	ASCLEPIADACEAE
MATOBL	10	Matelea obliqua	CLIMBING MILKWEED	H-VINE	5	UPL	ASCLEPIADACEAE
MATCHA	*	MATRICARIA CHAMOMILLA	GERMAN CHAMOMILE	A-FORB	5	UPL	ASTERACEAE
MATMAT	*	MATRICARIA MATRICARIOIDES	PINEAPPLE WEED	A-FORB	3	FACU	ASTERACEAE
MATPER	*	MATRICARIA PERFORATA	SCENTLESS CHAMOMILE	A-FORB	5	UPL	ASTERACEAE
MATSTR	9	Matteuccia struthiopteris	OSTRICH FERN	FERN	-3	FACW	ASPLENIACEAE
MATINC	-	MATTHIOLA INCANA	STOCK	A-FORB	5	UPL	BRASSICACEAE
MAZPUM	*	MAZUS PUMILUS	ANNUAL MAZUS	A-FORB	5	UPL	SCROPHULARIACEAE
MECACU	7	Mecardonia acuminata	WATER HYSSOP	P-FORB	-5	OBL	SCROPHULARIACEAE
MEDVIR	10	Medeola virginiana	INDIAN CUCUMBER ROOT	P-FORB	5	UPL	LILIACEAE
MEDARA	*	MEDICAGO ARABICA	SPOTTED MEDIC	A-FORB	5	UPL	FABACEAE
MEDFAL	*	MEDICAGO FALCATA	SICKLE ALFALFA	P-FORB	5	UPL	FABACEAE
MEDLUP	*	MEDICAGO LUPULINA	BLACK MEDICK	A-FORB	1	FAC-	FABACEAE
MEDORB	*	MEDICAGO ORBICULARIS	ROUND MEDICK	A-FORB	5	UPL	FABACEAE
MEDSAT	-	MEDICAGO SATIVA	ALFALFA	P-FORB	5	UPL	FABACEAE
MEDVAR	*	MEDICAGO \times VARIA	HYBRID ALFALFA	P-FORB	5	UPL	FABACEAE
MEGBEC	10	Megalodonta beckii	WATER MARIGOLD	P-FORB	-5	OBL	ASTERACEAE
MELLIN	10	Melampyrum lineare v. latifolium	COW WHEAT	A-FORB	1	FAC-	SCROPHULARIACEAE
MELNIV	10	Melanthera nivea	WHITE MELANTHERA	P-FORB	3	FACU	ASTERACEAE
MELVIR	10	Melanthium virginicum	BUNCH FLOWER	P-FORB	-4	FACW +	LILIACEAE
MELMUT	8	Melica mutica	NARROW MELIC GRASS	P-GRASS	5	UPL	POACEAE
MELNIT	7	Melica nitens	TALL MELIC GRASS	P-GRASS	5	UPL	POACEAE
MELALB	*	MELILOTUS ALBA	WHITE SWEET CLOVER	B-FORB	3	FACU	FABACEAE
MELALT	*	MELILOTUS ALTISSIMA	TALL SWEET CLOVER	B-FORB	5	UPL	FABACEAE
MELOFC	*	MELILOTUS OFFICINALIS	YELLOW SWEET CLOVER	B-FORB	3	FACU	FABACEAE
MELOFN	-	MELISSA OFFICINALIS	COMMON BALM	P-FORB	5	UPL	LAMIACEAE
MELCOR	*	MELOCHIA CORCHORIFOLIA	CHOCOLATE WEED	A-FORB	5	UPL	STERCULIACEAE
MELPEN	6	Melothria pendula	CREEPING CUCUMBER	P-FORB	1	FAC-	CUCURBITACEAE
MENCAN	4	Menispermum canadense	MOONSEED	W-VINE	-1	$\mathrm{FAC}+$	MENISPERMACEAE
MENARV	4	Mentha arvensis v . villosa	WILD MINT	P-FORB	-3	FACW	LAMIACEAE
MENCIT	*	MENTHA \times CITRATA	HYBRID LEMON MINT	P-FORB	-5	OBL	LAMIACEAE
MENCRI	*	MENTHA CRISPA	CURLY MINT	P-FORB	-4	FACW +	LAMIACEAE
MENGEN	*	MENTHA \times GENTILIS	LITTLE-LEAVED MINT	P-FORB	-4	FACW +	LAMIACEAE

Common Name	Physiognomy	W	Wet	Family
PEPPERMINT	P-FORB	-5	OBL	LAMIACEAE
APPLE MINT	P-FORB	-4	FACW +	LAMIACEAE
SPEARMINT	P-FORB	-4	FACW +	LAMIACEAE
SWEET APPLE MINT	P-FORB	5	UPL	LAMIACEAE
WHORLED MINT	P-FORB	-4	FACW +	LAMIACEAE
FOXTAIL MINT	P-FORB	-4	FACW +	LAMIACEAE
SAND LILY	P-FORB	5	UPL	LOASACEAE
LARGE-FLOWERED MENTZELIA	P-FORB	5	UPL	LOASACEAE
STICKLEAF	P-FORB	5	UPL	LOASACEAE
BUCKBEAN	P-FORB	-5	OBL	MENYANTHACEAE
VIRGINIA BLUEBELLS	P-FORB	-3	FACW	BORAGINACEAE
EULALIA	A-GRASS	0	FAC	POACEAE
MICROSTERIS	A.FORB	5	UPL	POLEMONIACEAE
CLIMBING HEMPWEED	P-FORB	-5	OBL	ASTERACEAE
WOOD MILLET	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
WINGED MONKEY FLOWER	P-FORB	-5	OBL	SCROPHULARIACEAE
YELLOW MONKEY FLOWER	P-FORB	-5	OBL	SCROPHULARIACEAE
MONKEY FLOWER	P-FORB	-5	OBL	SCROPHULARIACEAE
SLENDER SANDWORT	A-FORB	5	UPL	CARYOPHYLLACEAE
ROCK SANDWORT	P-FORB	5	UPL	CARYOPHYLLACEAE
PALE UMBRELLAWORT	P-FORB	5	UPL	NYCTAGINACEAE
HAIRY UMBRELLAWORT	P-FORB	5	UPL	NYCTAGINACEAE
FOUR O'CLOCK	P-FORB	5	UPL	NYCTAGINACEAE
NARROW-LEAVED UMBRELLAWORT	P-FORB	5	UPL	NYCTAGINACEAE
WILD FOUR O'CLOCK	P-FORB	5	UPL	NYCTAGINACEAE
SILVER GRASS	P-GRASS	5	UPL	POACEAE
CHINESE SILVER GRASS	P-GRASS	5	UPL	POACEAE
LESSER SNAPDRAGON	A-FORB	5	UPL	SCROPHULARIACEAE
PARTRIDGE BERRY	SHRUB	2	$\mathrm{FACU}+$	RUBIACEAE
BISHOP'S CAP	P-FORB	2	$\mathrm{FACU}+$	SAXIFRAGACEAE
BLUNT-LEAF SANDWORT	P-FORB	3	FACU	CARYOPHYLLACEAE
CARYOPHYLLACEAE	5		UPL	A-FORB
CARPET WEED	A.FORB	0	FAC	AIZOACEAE
MONARDA	P-FORB	5	UPL	LAMIACEAE
LEMON MINT	P-FORB	5	UPL	LAMIACEAE
BASIL BEE BALM	P-FORB	5	UPL	LAMIACEAE
OSWEGO TEA	P-FORB	5	UPL	LAMIACEAE
WILD BERGAMOT	P-FORB	3	FACU	LAMIACEAE
HORSEMINT	P-FORB	5	UPL	LAMIACEAE
POVERTY WEED	A-FORB	5	UPL	CHENOPODIACEAE
PINESAP	P-FORB	5	UPL	PYROLACEAE
INDIAN PIPE	P-FORB	3	FACU	PYROLACEAE
WHITE MULBERRY	TREE	0	FAC	MORACEAE

Common Name	Physiognomy	W	Wet	Family
RED MULBERRY	TREE	1	FAC.	MORACEAE
SCRATCH GRASS	P-GRASS	-3	FACW	POACEAE
SHORT-LEAVED SATIN GRASS	P-GRASS	5	UPL	POACEAE
HAIR GRASS	P-GRASS	3	FACU	POACEAE
PRAIRIE SATIN GRASS	P-GRASS	5	UPL	POACEAE
COMMON SATIN GRASS	P-GRASS	-3	FACW	POACEAE
SMOOTH SATIN GRASS	P-GRASS	5	UPL	POACEAE
MARSH WILD TIMOTHY	P-GRASS	-5	OBL	POACEAE
LEAFY SATIN GRASS	P-GRASS	-3	FACW	POACEAE
UPLAND WILD TIMOTHY	P-GRASS	-3	FACW	POACEAE
NIMBLEWILL	P-GRASS	0	FAC	POACEAE
ROCK SATIN GRASS	P-GRASS	5	UPL	POACEAE
WOODLAND SATIN GRASS	P-GRASS	-3	FACW	POACEAE
SLENDER SATIN GRASS	P-GRASS	5	UPL	POACEAE
GRAPE HYACINTH	P-FORB	5	UPL	LILIACEAE
BLUE BOTTLE	P-FORB	5	UPL	LILIACEAE
COMMON GRAPE HYACINTH	P-FORB	5	UPL	LILIACEAE
GRAPE HYACINTH	P-FORB	5	UPL	LILIACEAE
FIELD SCORPION GRASS	B-FORB	0	FAC	BORAGINACEAE
SCORPION GRASS	A-FORB	0	FAC	BORAGINACEAE
COMMON FORGET-ME-NOT	P-FORB	-5	OBL	BORAGINACEAE
SMALL-FLOWERED FORGET-ME-NOT	A-FORB	5	UPL	BORAGINACEAE
WOODLAND FORGET-ME-NOT	P-FORB	5	UPL	BORAGINACEAE
WHITE FORGET-ME-NOT	A-FORB	1	FAC-	BORAGINACEAE
GIANT CHICKWEED	P-FORB	-1	FAC +	CARYOPHYLLACEAE
MOUSETAIL	A-FORB	-3	FACW	RANUNCULACEAE
SPIKED WATER MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
VARIOUS-LEAVED WATER MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
MARE'S TAIL MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
ROUGH WATER MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
EUROPEAN WATER MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
WHORLED WATER MILFOIL	P-FORB	-5	OBL	HALORAGIDACEAE
COMMON NAIAD	A-FORB	-5	OBL	NAJADACEAE
SLENDER NAIAD	A-FORB	-5	OBL	NAJADACEAE
SOUTHERN NAIAD	A-FORB	-5	OBL	NAJADACEAE
SPINY NAIAD	A-FORB	-5	OBL	NAJADACEAE
LESSER NAIAD	A-FORB	-5	OBL	NAJADACEAE
GLADE MALLOW	P-FORB	-2	FACW-	MALVACEAE
PRIMROSE PEERLESS	P-FORB	5	UPL	LILIACEAE
POET'S NARCISSUS	P-FORB	5	UPL	LILIACEAE
DAFFODIL	P-FORB	5	UPL	LILIACEAE
WATER CRESS	P-FORB	-5	OBL	BRASSICACEAE
AMERICAN LOTUS	P-FORB	-5	OBL	NELUMBONACEAE

Physiognomy	W	Wet	Family
SHRUB	-5	OBL	AQUIFOLIACEAE
P-FORB	1	FAC.	LAMIACEAE
A-FORB	5	UPL	BRASSICACEAE
A-FORB	5	UPL	SOLANACEAE
A-FORB	5	UPL	SOLANACEAE
A-FORB	5	UPL	SOLANACEAE
A-FORB	5	UPL	RANUNCULACEAE
P-FORB	5	UPL	ASTERACEAE
P-FORB	5	UPL	LILIACEAE
P-FORB	. 5	OBL	NYMPHAEACEAE
P-FORB	. 5	OBL	NYMPHAEACEAE
P-FORB	-5	OBL	NYMPHAEACEAE
P-FORB	-5	OBL	MENYANTHACEAE
TREE	-5	OBL	NYSSACEAE
TREE	5	UPL	NYSSACEAE
P-FORB	5	UPL	GENTIANACEAE
A-FORB	5	UPL	LAMIACEAE
B-FORB	3	FACU	ONAGRACEAE
B-FORB	3	FACU	ONAGRACEAE
P-FORB	2	FACU +	ONAGRACEAE
P-FORB	2	FACU +	ONAGRACEAE
A-FORB	3	FACU	ONAGRACEAE
A-FORB	5	UPL	ONAGRACEAE
P-FORB	5	UPL	ONAGRACEAE
P-FORB	5	UPL	ONAGRACEAE
B-FORB	4	FACU-	ONAGRACEAE
P-FORB	0	FAC	ONAGRACEAE
P-FORB	1	FAC-	ONAGRACEAE
B-FORB	3	FACU	ONAGRACEAE
P-FORB	5	UPL	ONAGRACEAE
B-FORB	5	UPL	ONAGRACEAE
A-FORB	5	UPL	FABACEAE
FERN	-3	FACW	ASPLENIACEAE
A-FORB	5	UPL	FABACEAE
B-FORB	5	UPL	ASTERACEAE
P-FORB	5	UPL	BORAGINACEAE
P-FORB	5	UPL	BORAGINACEAE
P-FORB	5	UPL	BORAGINACEAE
FERN	4	FACU-	OPHIOGLOSSACEAE
FERN	-3	FACW	OPHIOGLOSSACEAE
FERN	-3	FACW	OPHIOGLOSSACEAE
SHRUB	5	UPL	CACTACEAE
SHRUB	5	UPL	CACTACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
OPUMAC	8	Opuntia macrorhiza	PLAINS PRICKLY-PEAR	SHRUB	5	UPL	CACTACEAE
Orivul	-	ORIGANUM VULGARE	OREGANO	P-FORB	5	UPL	LAMIACEAE
ORNNUT	*	ORNITHOGALUM NUTANS	NODDING STAR OF BETHLEHEM	P-FORB	5	UPL	LILIACEAE
ORNUMB	*	ORNITHOGALUM UMBELLATUM	COMMON STAR OF BETHLEHEM	P-FORB	1	FAC-	LILIACEAE
OROFAS	10	Orobanche fasciculata	CLUSTERED BROOM RAPE	P-FORB	5	UPL	OROBANCHACEAE
OROLUD	10	Orobanche ludoviciana	SOUTHERN BROOM RAPE	P-FORB	5	UPL	OROBANCHACEAE
ORORAM	*	OROBANCHE RAMOSA	BRANCHED BROOM RAPE	P-FORB	5	UPL	OROBANCHACEAE
OROUNI	8	Orobanche uniflora	CANCER-ROOT	P-FORB	5	UPL	OROBANCHACEAE
ORTSEC	10	Orthilia secunda	ONE-SIDED SHINLEAF	P-FORB	-1	FAC +	PYROLACEAE
ORYASP	10	Oryzopsis asperifolia	ROUGH-LEAVED RICE GRASS	P-GRASS	5	UPL	POACEAE
ORYPUN	10	Oryzopsis pungens	SHORT-HORNED RICE GRASS	P-GRASS	5	UPL	POACEAE
ORYRAC	8	Oryzopsis racemosa	BLACK-SEEDED RICE GRASS	P-GRASS	5	UPL	POACEAE
OSMCLI	3	Osmorhiza claytonii	HAIRY SWEET CICELY	P-FORB	4	FACU-	APIACEAE
OSMLON	3	Osmorhiza longistylis	ANISE ROOT	P-FORB	4	FACU-	APIACEAE
OSMCIN	9	Osmunda cinnamomea	CINNAMON FERN	FERN	-3	FACW	OSMUNDACEAE
OSMCLN	9	Osmunda claytoniana	INTERRUPTED FERN	FERN	-1	FAC +	OSMUNDACEAE
OSMREG	8	Osmunda regalis v. spectabilis	REGAL FERN	FERN	-5	OBL	OSMUNDACEAE
OSTVIR	4	Ostrya virginiana	HOP HORNBEAM	TREE	4	FACU-	CORYLACEAE
OXACOR	*	OXALIS CORNICULATA	CREEPING WOOD SORREL	P-FORB	3	FACU	OXALIDACEAE
OXADIL	0	Oxalis dillenii	COMMON WOOD SORREL	P-FORB	3	FACU	OXALIDACEAE
OXAILL	10	Oxalis illinoensis	ILLINOIS WOOD SORREL	P-FORB	5	UPL	OXALIDACEAE
OXASTR	0	Oxalis stricta	TALL WOOD SORREL	P-FORB	3	FACU	OXALIDACEAE
OXAVIO	5	Oxalis violacea	VIOLET WOOD SORREL	P-FORB	5	UPL	OXALIDACEAE
OXYARB	*	OXYDENDRUM ARBOREUM	SOURWOOD	TREE	3	FACU	ERICACEAE
OXYRIG	7	Oxypolis rigidior	COWBANE	P-FORB	-5	OBL	APIACEAE
PACTER	-	PACHYSANDRA TERMINALIS	JAPANESE SPURGE	SHURB	5	UPL	BUXACEAE
PANQUI	7	Panax quinquefolius	GINSENG	P-FORB	5	UPL	ARALIACEAE
PANANC	3	Panicum anceps	BEAKED PANIC GRASS	P-GRASS	-3	FACW	POACEAE
PANAUB	10	Panicum auburne	RED-BROWN PANIC GRASS	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
PANBOR	10	Panicum boreale	NORTHERN PANIC GRASS	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
PANBOB	5	Panicum boscii	BEAROED BROAD-LEAVEO PANIC GRASS	P-GRASS	5	UPL	POACEAE
PANBOM	5	Panicum boscii v. molle	LARGE-FRUITED PANIC GRASS	P-GRASS	5	UPL	POACEAE
PANCAP	0	Panicum capillare	OLD WITCH GRASS	A-GRASS	0	FAC	POACEAE
PANCLA	4	Panicum clandestinum	DEER-TONGUE GRASS	P-GRASS	-3	FACW	POACEAE
PANCOL	10	Panicum columbianum	HEMLOCK PANIC GRASS	P-GRASS	5	UPL	POACEAE
PANCOC	7	Panicum commutatum	PANIC GRASS	P-GRASS	0	FAC	POACEAE
PANCOA	7	Panicum commutatum v, ashei	ASHE'S PANIC GRASS	P-GRASS	0	FAC	POACEAE
PANDEP	7	Panicum depauperatum	STARVED PANIC GRASS	P-GRASS	5	UPL	POACEAE
PANDII	0	Panicum dichotomiflorum	FALL PANICUM	A-GRASS	-2	FACW-	POACEAE
PANDIU	6	Panicum dichotomum	FORKED PANIC GRASS	P-GRASS	1	FAC-	POACEAE
PANFLE	7	Panicum flexile	SLENDER PANIC GRASS	A-GRASS	-4	FACW +	POACEAE
PANGAT	5	Panicum gattingeri	GATTINGER'S PANIC GRASS	A-GRASS	0	FAC	POACEAE
PANHIA	5	Panicum hians	PANIC GRASS	P-GRASS	-5	OBL	POACEAE

Acronym	CC	Scientific Name	Common Name
PANIMP	2	Panicum implicatum	OLD FIELD PANIC GRASS
PANJOO	10	Panicum joorı	JOOR'S PANIC GRASS
PANLAT	5	Panicum latifolium	BROAD-LEAVED PANIC GRASS
PANLAX	5	Panicum laxiflorum	LOOSE-FLOWERED PANIC GRASS
PANLEI	7	Panicum leibergii	PRAIRIE PANIC GRASS
PANLID	4	Panicum lindheimeri	SMOOTH WODLLY PANIC GRASS
PANLIE	7	Panicum linearifolium	SLENDER-LEAVED PANIC GRASS
PANLON	10	Panicum longifolium	LONG-LEAVED PANIC GRASS
PANMAL	10	Panicum malacophyllum	SOFT-LEAVED PANIC GRASS
PANMAT	5	Panicum mattamuskeetense	FALSE BEARDED PANIC GRASS
PANMER	7	Panicum meridionale	MAT PANIC GRASS
PANMIC	6	Panicum microcarpon	SMALL-FRUITED PANIC GRASS
PANMIL	-	PANICUM MILIACEUM	BROOM-CORN MILLET
PANOLH	5	Panicum oligosanthes v. helleri	HELLER'S PANIC GRASS
PANOLS	3	Panicum oligosanthes v. scribnerianum	SCRIBNER'S PANIC GRASS
PANPER	9	Panicum perlongum	LONG-STALKED PANIC GRASS
PANPHI	5	Panicum philadelphicum	PHILADELPHIA PANIC GRASS
PANPOL	6	Panicum polyanthes	SMALL-FRUITED PANIC GRASS
PANPRA	7	Panicum praecocius	EARLY WHITE-HAIRED PANIC GRASS
PANRAV	10	Panicum ravenelii	RAVENEL'S PANIC GRASS
PANRIR	6	Panicum rigidulum	MUNRO GRASS
PANRIC	6	Panicum rigidulum v. condensum	MUNRO GRASS
PANSCO	6	Panicum scoparium	BROOM PANIC GRASS
PANSPH	7	Panicum sphaerocarpon	ROUND-FRUITED PANIC GRASS
PANSTI	5	Panicum stipitatum	STALK-FRUITED PANIC GRASS
PANVIV	5	Panicum villosissimum	WHITE-HAIRED PANIC GRASS
PANVIP	5	Panicum villosissimum v. pseudopubescens	FALSE WHITE-HAIRED PANIC GRASS
PANVIR	4	Panicum virgatum	PRAIRIE SWITCH GRASS
PANWIL	10	Panicum wilcoxianum	WILCOX'S PANIC GRASS
PANYAD	10	Panicum yadkinense	CAROLINA PANIC GRASS
PAPDUB	-	PAPAVER DUBIUM	POPPY
PAPRHO	*	PAPAVER RHOEAS	CORN POPPY
PAPSOM	-	PAPAVER SOMNIFERUM	COMMON POPPY
PARPEN	2	Parietaria pensylvanica	PENNSYLVANIA PELLITORY
PARGLA	9	Parnassia glauca	GRASS-OF-PARNASSUS
PARCAN	5	Paronychia canadensis	TALL FORKED CHICKWEED
PARFAS	5	Paronychia fastigiata	LOW FORKED CHICKWEED
PARHYS	*	PARTHENIUM HYSTEROPHORUS	SANTA MARIA
PARINT	8	Parthenium integrifolium	WILD QUININE
PARINS	1	Parthenocissus inserta	THICKET CREEPER
PARQUI	2	Parthenocissus quinquefolia	VIRGINIA CREEPER
PARTRI	-	PARTHENOCISSUS TRICUSPIDATA	BOSTON IVY
PASBUS	4	Paspalum bushii	HAIRY BEAD GRASS

APPIENIDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
PASCIC	3	Paspalum ciliatifolium	LENS GRASS	P-GRASS	5	UPL	POACEAE
PASCIM	3	Paspalum ciliatifolium v. muhlenbergii	DOWNY LENS GRASS	P-GRASS	5	UPL	POACEAE
PASCIS	3	Paspalum ciliatifolium v. stramineum	DOWNY LENS GRASS	P-GRASS	5	UPL	POACEAE
PASDIL	-	PASPALUM DILATATUM	DALLIS GRASS	P-GRASS	5	UPL	PDACEAE
PASDIS	8	Paspalum dissectum	SWAMP BEAD GRASS	P-GRASS	-5	OBL	POACEAE
PASFLO	7	Paspalum floridanum	GIANT BEAD GRASS	P-GRASS	-3	FACW	POACEAE
PASFLU	5	Paspalum fluitans	SWAMP BEAD GRASS	P-GRASS	-5	OBL	PDACEAE
PASLAE	2	Paspalum laeve	SMOOTH LENS GRASS	P-GRASS	5	UPL	POACEAE
PASLEN	10	Paspalum lentiferum	TWO-ROWED BEAD GRASS	P-GRASS	5	UPL	POACEAE
PASPUB	3	Paspalum pubiflorum v. glabrum	FOUR-ROWED BEAD GRASS	P-GRASS	-3	FACW	POACEAE
PASINC	3	Passiflora incarnata	LARGE PASSION FLOWER	H-VINE	3	FACU	PASSIFLORACEAE
PASLUT	6	Passiflora lutea v. glabriflora	SMALL PASION FLOWER	H-VINE	5	UPL	PASSIFLORACEAE
PASSAT	*	PASTINACA SATIVA	WILD PARSNIP	B-FORB	5	UPL	APIACEAE
PAUTOM	*	PAULOWNIA TOMENTOSA	EMPRESS TREE	TREE	5	UPL	SCROPHULARIACEAE
PEDCAN	7	Pedicularis canadensis	WOOD BETONY	P-FORB	2	$\mathrm{FACU}+$	SCROPHULARIACEAE
PEDLAN	9	Pedicularis lanceolata	FEN BETONY	P-FORB	-4	FACW +	SCROPHULARIACEAE
PELATR	9	Pellaea atropurpurea	PURPLE CLIFF BRAKE	FERN	5	UPL	ADIANTACEAE
PELGLA	8	Pellaea glabella	PURPLE CLIFF BRAKE	FERN	5	UPL	ADIANTACEAE
PELVIR	8	Peltandra virginica	ARROW ARUM	P-FORB	-5	OBL	ARACEAE
PENALO	*	PENNISETUM ALOPECUROIDES	FOXTAIL MILLET	P-GRASS	5	UPL	POACEAE
PENALL	10	Penstemon alluviorum	LOWLAND BEARD TONGUE	P-FORB	-4	FACW +	SCROPHULARIACEAE
PENARK	10	Penstemon arkansanus	ARKANSAS BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENBRE	10	Penstemon brevisepalus	SHORT-SEPALLED BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENCAL	3	Penstemon calycosus	SMOOTH BEARD TONGUE	P-FORB	3	FACU	SCROPHULARIACEAE
PENCAN	10	Penstemon canescens v. brittonorum	HOARY BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENCOB	*	PENSTEMON COBAEA	SHOWY BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENDIG	4	Penstemon digitalis	FOXGLOVE BEARD TONGUE	P-FORB	1	FAC-	SCROPHULARIACEAE
PENGRW	*	PENSTEMON GRACILIS v. WISCONSINENIS	SLENDER BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENGRN	8	Penstemon grandiflorus	LARGE-FLOWERED BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENHIR	8	Penstemon hirsutus	HAIRY BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENPAL	6	Penstemon pallidus	PALE BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENTUB	5	Penstemon tubaeflorus	WESTERN BEARD TONGUE	P-FORB	5	UPL	SCROPHULARIACEAE
PENSED	2	Penthorum sedoides	DITCH STONECROP	P-FORB	-5	OBL	SAXIFRAGACEAE
PERAME	6	Perideridia americana	THICKET PARSLEY	P-FORB	5	UPL	APIACEAE
PERFRU	*	PERILLA FRUTESCENS	BEEFSTEAK PLANT	A-FORB	0	FAC	LAMIACEAE
PETHYU	*	PETASITES HYBRIDUS	BUTTERBUR	P-FORB	5	UPL	ASTERACEAE
PETSAX	*	PETRORHAGIA SAXIFRAGA	SAXIFRAGE PINK	P-FORB	5	UPL	CARYOPHYLLACEAE
PETAXI	*	PETUNIA AXILLARIS	WHITE PETUNIA	A-FDRB	5	UPL	SOLANACEAE
PETHYA	*	PETUNIA \times HYBRIDA	GARDEN PETUNIA	A-FORB	5	UPL	SOLANACEAE
PETVIO	*	PETUNIA VIOLACEA	VIOLET PETUNIA	A-FORB	5	UPL	SOLANACEAE
PHABIP	6	Phacelia bipinnatifida	LEAFY PHACELIA	B-FORB	5	UPL	HYDROPHYLLACEAE
PHAGIL	9	Phacelia gilioides	GILIA PHACELIA	A-FORB	5	UPL	HYDROPHYLLACEAE
PHAPUR	4	Phacelia purshii	MIAMI MIST	A-FORB	4	FACU.	HYDROPHYLLACEAE

APPIENDIX: Vegetation of Illinois Database

Common Name	Physiognomy	W	Wet	Family
BUTTERCUP PHACELIA	A-FORB	-3	FACW	HYDROPHYLLACEAE
REED CANARY GRASS	P-GRASS	-4	FACW +	POACEAE
BIRDSEED GRASS	A-GRASS	3	FACU	POACEAE
WILD KIDNEY BEAN	P-FORB	5	UPL	FABACEAE
LONG BEECH FERN	FERN	5	UPL	THELYPTERIDACEAE
BROAD BEECH FERN	FERN	1	FAC.	THELYPTERIDACEAE
AMUR CORK TREE	TREE	5	UPL	RUTACEAE
SWEET MOCK ORANGE	SHRUB	5	UPL	PHILADELPHACEAE
FEW-FLOWERED MOCK ORANGE	SHRUB	5	UPL	PHILADELPHACEAE
SCENTLESS MOCK ORANGE	SHRUB	5	UPL	PHILADELPHACEAE
DOWNY MOCK ORANGE	SHRUB	5	UPL	PHILADELPHACEAE
TIMOTHY	P-GRASS	3	FACU	POACEAE
CLEFF PHLOX	P-FORB	5	UPL	POLEMONIACEAE
CAROLINA PHLOX	P-FORB	-3	FACW	POLEMONIACEAE
BLUE PHLOX	P-FORB	3	FACU	POLEMONIACEAE
SMOOTH PHLOX	P-FORB	-3	FACW	POLEMONIACEAE
WILD SWEET WILLIAM	P-FORB	-5	OBL	POLEMONIACEAE
GARDEN PHLOX	P-FORB	3	FACU	POLEMONIACEAE
SAND PRAIRIE PHLOX	P-FORB	1	FAC.	POLEMONIACEAE
PRAIRIE PHLOX	P-FORB	-1	$\mathrm{FAC}+$	POLEMONIACEAE
SANGAMON PHLOX	P-FORB	1	FAC-	POLEMONIACEAE
MOSS PHLOX	SHRUB	5	UPL	POLEMONIACEAE
MISTLETOE	SHRUB	5	UPL	VISCACEAE
COMMON REED	P-GRASS	-4	FACW +	POACEAE
LOPSEED	P-FORB	5	UPL	PHRYMACEAE
HOARY FOG FRUIT	P-FORB	-3	FACW	VERBENACEAE
FOG FRUIT	P-FORB	-5	OBL	VERBENACEAE
DAINTIES	A-FORB	0	FAC	EUPHORBIACEAE
BITTER WRACK	A-FORB	5	UPL	EUPHORBIACEAE
CHINESE LANTERN	P-FORB	5	UPL	SOLANACEAE
CUT-LEAVED GROUND CHERRY	A-FORB	0	FAC	SOLANACEAE
BARBADOS GROUND CHERRY	A-FORB	5	UPL	SOLANACEAE
CLAMMY GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
TOMATILLO	A-FORB	5	UPL	SOLANACEAE
NARROW-LEAVED GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
TALL GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
LARGE-FRUITED GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
CUT-LEAVED GROUND CHERRY	A-FORB	5	UPL	SOLANACEAE
STRAWBERRY TOMATO	A-FORB	5	UPL	SOLANACEAE
HAIRY GROUND CHERRY	A-FORB	5	UPL	SOLANACEAE
DWARF GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
SMOOTH GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE
TEXAS GROUND CHERRY	P-FORB	5	UPL	SOLANACEAE

Alplinidix: Vegetation of Illinors Database

Common Name	Physiognomy	W	Wet	Family
GREEN ORCHID	P-FORB	- 5	OBL	ORCHIDACEAE
TALL WHITE ORCHID	P-FORB	-4	FACW +	ORCHIDACEAE
TUBERCLED ORCHID	P-FORB	-3	FACW	ORCHIDACEAE
TUBERCLED ORCHID	P-FORB	-3	FACW	ORCHIDACEAE
HOOKER'S ORCHIO	P-FORB	-1	$\mathrm{FAC}+$	ORCHIDACEAE
GREEN ORCHID	P-FORB	-4	FACW +	ORCHIDACEAE
GREEN FRINGED ORCHID	P-FORB	-3	FACW	ORCHIDACEAE
PRAIRIE WHITE FRINGED ORCHID	P-FORB	-4	FACW +	ORCHIDACEAE
ROUND-LEAVED ORCHID	P-FORB	0	FAC	ORCHIDACEAE
PURPLE FRINGELESS ORCHID	P-FORB	-3	FACW	ORCHIDACEAE
PURPLE FRINGED ORCHID	P-FORB	-3	FACW	ORCHIDACEAE
BUTTONWOOD	TREE	-3	FACW	PLATANACEAE
CAMPHOR WEED	A-FORB	-3	FACW	ASTERACEAE
CAMPHOR WEED	A-FORB	5	UPL	ASTERACEAE
GROVE BLUE GRASS	P-GRASS	-3	FACW	POACEAE
ANNUAL BLUE GRASS	A-GRASS	1	FAC-	POACEAE
TEXAS BLUE GRASS	P-GRASS	5	UPL	POACEAE
PLAINS BLUE GRASS	P-GRASS	0	FAC	POACEAE
AUTUMN BLUE GRASS	P-GRASS	0	FAC	POACEAE
BULBOUS BLUE GRASS	P-GRASS	5	UPL	POACEAE
SPEAR GRASS	A-GRASS	3	FACU	POACEAE
CANADIAN BLUE GRASS	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
WEAK BLUE GRASS	P-GRASS	5	UPL	POACEAE
WOODLAND BLUE GRASS	P-GRASS	0	FAC	POACEAE
MARSH BLUE GRASS	P-GRASS	-5	OBL	POACEAE
FOWL BLUE GRASS	P-GRASS	-4	$\mathrm{FACW}+$	POACEAE
KENTUCKY BLUE GRASS	P-GRASS	1	FAC.	POACEAE
WOODLAND BLUE GRASS	P-GRASS	0	FAC	POACEAE
MEADOW GRASS	P-GRASS	-3	FACW	POACEAE
MEADOW BLUE GRASS	P-GRASS	5	UPL	POACEAE
MAY APPLE	P-FORB	3	FACU	BERBERIDACEAE
ROSE POGONIA	P-FORB	-5	OBL	ORCHIDACEAE
PAINTED LEAF	A-FORB	5	UPL	EUPHORBIACEAE
TOOTHED SPURGE	A-FORB	5	UPL	EUPHORBIACEAE
CLAMMY WEED	A-FORB	5	UPL	CAPPARIDACEAE
CLAMMY WEED	A-FORB	5	UPL	CAPPARIDACEAE
JAMES' CLAMMY WEED	A-FORB	5	UPL	CAPPARIDACEAE
JACOB'S LADDER	P-FORB	0	FAC	POLEMONIACEAE
WIRY GOOSEFOOT	A-FORB	5	UPL	CHENOPODIACEAE
CROSS MILKWORT	A-FORB	-4	FACW +	POLYGALACEAE
PINK MILKWORT	A-FORB	4	FACU-	POLYGALACEAE
FLOWERING WINTERGREEN	P-FORB	3	FACU	POLYGALACEAE
PURPLE MILKWORT	B-FORB	4	FACU.	POLYGALACEAE

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
POLSAN	5	Polygala sanguinea	FIELD MILKWORT	A-FORB	3	FACU	POLYGALACEAE
POLSEN	7	Polygala senega	SENECA SNAKEROOT	P-FORB	3	FACU	POLYGALACEAE
POLVER	9	Polygala verticillata	WHORLED MILKWORT	A-FORB	5	UPL	POLYGALACEAE
POLVER	5	Polygala verticillata v. ambigua	WHORLED MILKWORT	A-FORB	5	UPL	POLYGALACEAE
POLVER	5	Polygala verticillata v. isocycla	WHORLED MILKWORT	A-FORB	5	UPL	POLYGALACEAE
POLBIF	7	Polygonatum biflorum	SMALL SOLOMON SEAL	P-FORB	3	FACU	LILIACEAE
POLCOM	4	Polygonatum commutatum	GREAT SOLOMON SEAL	P-FORB	3	FACU	LILIACEAE
POLPUB	10	Polygonatum pubescens	DOWNY SOLOMAN'S SEAL	P-FORB	5	UPL	LILIACEAE
POLART	9	Polygonella articulata	JOINTWEED	A-FORB	5	UPL	POLYGONACEAE
POLACH	0	Polygonum achoreum	BEAK-SEEDED KNOTWEED	A-FORB	0	FAC	POLYGONACEAE
POLAMP	3	Polygonum amphibium	WATER KNOTWEED	P-FORB	-5	OBL	POLYGONACEAE
POLARE	*	POLYGONUM ARENASTRUM	SIDEWALK KNOTWEED	A-FORB	5	UPL	POLYGONACEAE
POLARI	10	Polygonum arifolium v. pubescens	HALBRED-LEAVED TEAR-THUMB	A-FORB	-5	OBL	POLYGONACEAE
POLAVI	*	POLYGONUM AVICULARE	COMMON KNOTWEED	A-FORB	1	FAC	POLYGONACEAE
POLBIC	2	Polygonum bicorne	LONG-STYLED KNOTWEED	A-FORB	0	FAC	POLYGONACEAE
POLBUN	*	POLYGONUM BUNGEANUM	RICKLY SMARTWEED	A-FORB	-3	FACW	POLYGONACEAE
POLBUX	0	Polygonum buxiforme	BOXWOOD KNOTWEED	A-FORB	5	UPL	POLYGONACEAE
POLCAR	10	Polygonum careyi	CAREY'S HEARTSEASE	A-FORB	-4	FACW +	POLYGONACEAE
POLCES	*	POLYGONUM CESPITOSUM v. LONGISETUM	CREEPING SMARTWEED	A-FORB	5	UPL	POLYGONACEAE
POLCON	*	POLYGONUM CONVOLVULUS	BLACK BIRDWEED	A-FORB	1	FAC	POLYGONACEAE
POLCRI	4	Polygonum cristatum	COPSE BINDWEED	H-VINE	0	FAC	POLYGONACEAE
POLCUS	*	POLYGONUM CUSPIDATUM	JAPANESE KNOTWEED	SHRUB	3	FACU	POLYGONACEAE
POLERE	0	Polygonum erectum	ERECT KNOTWEED	A-FORB	3	FACU	POLYGONACEAE
POLEXS	0	Polygonum exsertum	LONG-FRUITED KNOTWEED	A-FORB	0	FAC	POLYGONACEAE
POLHYR	*	POLYGONUM HYDROPIPER	WATER PEPPER	A-FORB	-5	OBL	POLYGONACEAE
POLHYO	4	Polygonum hydropiperoides	MILD WATER PEPPER	P-FORB	-5	OBL	POLYGONACEAE
POLLAP	0	Polygonum lapathifolium	CURTTOP LADY'S THUMB	A-FORB	-4	FACW +	POLYGONACEAE
POLNEG	-	POLYGONUM NEGLECTUM	LEAFY KNOTWEED	A-FORB	5	UPL	POLYGONACEAE
POLOPE	8	Polygonum opelousanum	SCALY MILD WATER PEPPER	P-FORB	-5	OBL	POLYGONACEAE
POLORI	*	POLYGONUM ORIENTALE	KISS-ME-OVER-THE-GARDEN-GATE	A-FORB	5	UPL	POLYGONACEAE
POLPEN	1	Polygonum pensylvanicum	PINKWEED	A-FORB	-4	FACW +	POLYGONACEAE
POLPER	*	POLYGONUM PERSICARIA	LADY'S THUMB	A-FORB	-3	FACW	POLYGONACEAE
POLPRL	0	Polygonum prolificum	LEAFY KNOTWEED	A-FORB	1	FAC-	POLYGONACEAE
POLPUN	3	Polygonum punctatum	SMARTWEED	A-FORB	-5	OBL	POLYGONACEAE
POLRAM	3	Polygonum ramosissimum	BUSHY KNOTWEED	A-FORB	1	FAC-	POLYGONACEAE
POLSAC	-	POLYGONUM SACHALINENSE	GIANT KNOTWEED	SHRUB	5	UPL	POLYGONACEAE
POLSAG	5	Polygonum sagittatum	ARROW-LEAVED TEARTHUMB	A-FORB	-5	OBL	POLYGONACEAE
POLSCB	-	POLYGONUM SCABRUM	HEDGE CORNBIND	A-FORB	5	UPL	POLYGONACEAE
POLSCN	2	Polygonum scandens	CLIMBING FALSE BUCKWHEAT	H-VINE	0	FAC	POLYGONACEAE
POLSET	7	Polygonum setaceum v. interjectum	BRISTLY SMARTWEED	P-FORB	-5	OBL	POLYGONACEAE
POLTEN	5	Polygonum tenue	SLENDER KNOTWEED	A-FORB	5	UPL	POLYGONACEAE
POLVIG	3	Polygonum virginianum	VIRGINIA KNOTWEED	P-FORB	0	FAC	POLYGONACEAE
POLCAN	4	Polymnia canadensis	PALE LEAFCUP	P-FORB	5	UPL	ASTERACEAE

APPENDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
POLUVE	6	Polymnia uvedalia	BEAR'S FOOT	P-FORB	4	FACU-	ASTERACEAE
POLPOM	10	Polypodium polypodioides v . michauxianum	GRAY POLYPODY	FERN	5	UPL	POLYPODIACEAE
POLVIN	8	Polypodium virginianum	COMMON POLYPODY	FERN	5	UPL	POLYPODIACEAE
POLPRC	5	Polypremum procumbens	RUST WEED	P-FORB	5	UPL	LOGANIACEAE
POLACR	5	Polystichum acrostichoides	CHRISTMAS FERN	FERN	5	UPL	ASPLENIACEAE
POLNUT	8	Polytaenia nuttallii	PRAIRIE PARSLEY	P-FORB	5	UPL	APIACEAE
PONCOR	8	Pontederia cordata	PICKEREL WEED	P-FORB	-5	OBL	PONTEDERIACEAE
POPALB	*	POPULUS ALBA	WHITE POPLAR	TREE	5	UPL	SALICACEAE
POPBAL	7	Populus balsamifera	BALSAM POPLAR	TREE	-3	FACW	SALICACEAE
POPCAN	*	POPULUS CANESCENS	GRAY POPLAR	TREE	5	UPL	SALICACEAE
POPDEL	2	Populus deltoides	EASTERN COTTONWOOD	TREE	-1	FAC +	SALICACEAE
POPGIL	*	POPULUS \times GILEADENSIS	BALM-OF-GILEAD	TREE	5	UPL	SALICACEAE
POPGRA	4	Populus grandidentata	BIG-TOOTH ASPEN	TREE	3	FACU	SALICACEAE
POPHET	8	Populus heterophylla	SWAMP COTTONWOOD	TREE	- 5	OBL	SALICACEAE
POPNIG	*	POPULUS NIGRA ITALICA	LOMBARDY POPLAR	TREE	5	UPL	SALICACEAE
POPTRE	3	Populus tremuloides	QUAKING ASPEN	TREE	0	FAC	SALICACEAE
PORSTI	6	Porteranthus stipulatus	INDIAN PHYSIC	P-FORB	5	UPL	ROSACEAE
PORTRI	10	Porteranthus trifoliatus	INDIAN PHYSIC	P-FORB	5	UPL	ROSACEAE
PORGRA	*	PORTULACA GRANDIFLORA	MOSS ROSE	A-FORB	5	UPL	PORTULACACEAE
POROLE	*	PORTULACA OLERACEA	PURSLANE	A-FORB	1	FAC-	PORTULACACEAE
POTAMP	10	Potamogeton amplifolius	LARGE-LEAVED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTCRI	*	POTAMOGETON CRISPUS	BEGINNER'S PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTDIV	6	Potamogeton diversifolius	WATER-THREAD PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTEPI	10	Potamogeton epihydrus	RIBBON-LEAVED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTFOL	- 5	Potamogeton foliosus	LEAFY PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTFRI	10	Potamogeton friesii	FRIES'S PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTGRA	10	Potamogeton gramineus	GRASS-LEAVED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTILL	7	Potamogeton illinoensis	ILLINOIS PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTNAT	7	Potamogeton natans	COMMON PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTNOD	7	Potamogeton nodosus	AMERICAN PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTPEC	5	Potamogeton pectinatus	COMB PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTPRA	10	Potamogeton praelongus	WHITE-STEMMED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTPUL	10	Potamogeton pulcher	SPOTTED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTPUS	7	Potamogeton pusillus	BABY PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTRIC	10	Potamogeton richardsonii	REDHEAD GRASS	P-FORB	- 5	OBL	POTAMOGETONACEAE
POTROB	10	Potamogeton robbinsii	FERN PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTSTR	10	Potamogeton strictifolius	STIFF PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTVAS	10	Potamogeton vaseyi	VASEY'S PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTZOS	8	Potamogeton zosteriformis	FLAT-STEMMED PONDWEED	P-FORB	-5	OBL	POTAMOGETONACEAE
POTANS	6	Potentilla anserina	SILVERWEED	P-FORB	-4	FACW +	ROSACEAE
POTARE	*	POTENTILLA ARGENTEA	SILVERY CINQUEFOIL	P-FORB	3	FACU	ROSACEAE
POTARU	10	Potentilla arguta	PRAIRIE CINQUEFOIL	P-FORB	4	FACU.	ROSACEAE
POTFRU	10	Potentilla fruticosa	SHRUBBY CINQUEFOIL	SHRUB	-3	FACW	ROSACEAE

Common Name	Physiognomy	W	Wet	Family
HOARY CINQUEFOIL	P-FORB	5	UPL	ROSACEAE
INTERMEDIATE CINQUEFOIL	P-FORB	5	UPL	ROSACEAE
CINQUEFOIL	A-FORB	-5	OBL	ROSACEAE
ROUGH CINQUEFOIL	A-FORB	0	FAC	ROSACEAE
MARSH CINQUEFOIL	P-FORB	-5	OBL	ROSACEAE
CINQUEFOIL	A-FORB	. 4	FACW +	ROSACEAE
GRAY CINQUEFOIL	P-FORB	5	UPL	ROSACEAE
SULFUR CINQUEFOIL	P-FORB	5	UPL	ROSACEAE
CREEPING CINQUEFOIL	P-FORB	5	UPL	ROSACEAE
BROOK CINQUEFOIL	P-FORB	-4	FACW +	ROSACEAE
COMMON CINQUEFOIL	P-FORB	4	FACU.	ROSACEAE
THREE-TOOTHED CINQUEFOIL	SHRUB	5	UPL	ROSACEAE
LION'S FOOT	P-FORB	3	FACU	ASTERACEAE
TALL WHITE LETTUCE	P-FORB	3	FACU	ASTERACEAE
ROUGH WHITE LETTUCE	P-FORB	5	UPL	ASTERACEAE
GREAT WHITE LETTUCE	P-FORB	- 1	FAC +	ASTERACEAE
GLAUCOUS WHITE LETTUCE	P-FORB	-3	FACW	ASTERACEAE
BIRD'S-EYE PRIMROSE	P-FORB	-3	FACW	PRIMULACEAE
GOLDENWEED	A-FORB	5	UPL	ASTERACEAE
DEVILS CLAW	A-FORB	-1	FAC +	MARTYNIACEAE
MERMAIO WEED	P-FORB	-5	OBL	HALORAGIDACEAE
LAWN PRUNELLA	P-FORB	0	FAC	LAMIACEAE
SELF-HEAL	P-FORB	0	FAC	LAMIACEAE
AMERICAN PLUM	TREE	5	UPL	ROSACEAE
WILD PLUM	TREE	5	UPL	ROSACEAE
CHICKASAW PLUM	SHRUB	5	UPL	ROSACEAE
APRICOT	TREE	5	UPL	ROSACEAE
SWEET CHERRY	TREE	5	UPL	ROSACEAE
SOUR CHERRY	TREE	5	UPL	ROSACEAE
WILD GOOSE PLUM	TREE	5	UPL	ROSACEAE
PERFUMED CHERRY	TREE	5	UPL	ROSACEAE
BIG TREE PLUM	TREE	5	UPL	ROSACEAE
WILD GOOSE PLUM	TREE	5	UPL	ROSACEAE
CANADA PLUM	TREE	4	FACU-	ROSACEAE
EUROPEAN BIRD CHERRY	TREE	5	UPL	ROSACEAE
PIN CHERRY	TREE	4	FACU.	ROSACEAE
PEACH	TREE	5	UPL	ROSACEAE
WILD BLACK CHERRY	TREE	3	FACU	ROSACEAE
SAND CHERRY	TREE	5	UPL	ROSACEAE
NANKING CHERRY	TREE	5	UPL	ROSACEAE
COMMON CHOKE CHERRY	SHRUB	1	FAC	ROSACEAE
SILVERY SURFY PEA	P-FORB	5	UPL	FABACEAE
FRENCH GRASS	P-FORB	5	UPL	FABACEAE

AP1M:NDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	w	Wet	Family
PSOPSO	6	Psoralea psoralioides v. eglandulosa	SAMPSON'S SNAKEROOT	P-FORB	5	UPL	FABACEAE
PSOTEN	8	Psoralea tenuiflora	SCURFY-PEA	P-FORB	5	UPL	FABACEAE
PTETRT	4	Ptelea trifoliata	WAFER ASH	SHRUB	2	$\mathrm{FACU}+$	RUTACEAE
PTETRM	6	Ptelea trifoliatav. mollis	DOWNY WAFER ASH	SHRUB	5	UPL	RUTACEAE
PTEAQU	5	Pteridium aquilinum	BRACKEN FERN	FERN	3	FACU	DENNSTAEDTIACEAE
PTICOS	10	Ptilimnium costatum	MOCK BISHOP'S WEED	A-FORB	-5	OBL	APIACEAE
PTINUT	7	Ptilimnium nuttallii	MOCK BISHOP'S WEED	A-FORB	-4	FACW +	APIACEAE
PUCDIS	-	PUCCINELLIA DISTANS	ALKALI GRASS	P-GRASS	-5	OBL	POACEAE
PUELOB	*	PUERARIA LOBATA	KUOZU	W-VINE	5	UPL	FABACEAE
PULPAT	9	Pulsatilla patens v. multifida	PASQUE FLOWER	P-FORB	5	UPL	RANUNCULACEAE
PYCALB	10	Pycnanthemum albescens	WHITE MOUNTAIN MINT	P-FORB	5	UPL	LAMIACEAE
PYCINC	8	Pycnanthemum incanum	GRAY MOUNTAIN MINT	P-FORB	5	UPL	LAMIACEAE
PYCMUT	10	Pycnanthemum muticum	BROAD-LEAVED MOUNTAIN MINT	P-FORB	0	FAC	LAMIACEAE
PYCPIL	6	Pycnanthemum pilosum	HAIRY MOUNTAIN MINT	P-FORB	5	UPL	LAMIACEAE
PYCPYC	8	Pycnanthemum pycnanthemoides	MOUNTAIN MINT	P-FORB	5	UPL	LAMIACEAE
PYCTEN	4	Pycnanthemum tenuifolium	SLENDER MOUNTAIN MINT	P-FORB	0	FAC	LAMIACEAE
PYCTOR	10	Pycnanthemum torrei	TORREY'S MOUNTAIN MINT	P-FORB	5	UPL	LAMIACEAE
PYCVIR	5	Pycnanthemum virginianum	COMMON MOUNTAIN MINT	P-FORB	-4	FACW +	LAMIACEAE
PYRAME	10	Pyrola americana	ROUND-LEAVED SHINLEAF	P-FORB	1	FAC-	PYROLACEAE
PYRELL	8	Pyrola elliptica	LARGE-LEAVED SHINLEAF	P-FORB	5	UPL	PYROLACEAE
PYRCAR	1	Pyrrhopappus carolinianus	FALSE DANDELION	A-FORB	5	UPL	ASTERACEAE
PYRCAL	*	PYRUS CALLERYANA	ORNAMENTAL PEAR	TREE	5	UPL	ROSACEAE
PYRCOM	*	PYRUS COMMUNIS	PEAR	TREE	5	UPL	ROSACEAE
PYRPYR	*	PYRUS PYRIFOLIA	CHINESE PEAR	TREE	5	UPL	ROSACEAE
QUEALB	. 5	Quercus alba	WHITE OAK	TREE	3	FACU	FAGACEAE
QUEBIC	7	Quercus bicolor	SWAMP WHITE OAK	TREE	-4	FACW +	FAGACEAE
QUECOC	7	Quercus coccinea	SCARLET OAK	TREE	5	UPL	FAGACEAE
QUEELL	5	Quercus ellipsoidalis	HILL'S OAK	TREE	5	UPL	FAGACEAE
QUEFAL	6	Quercus falcata	SOUTHERN RED OAK	TREE	3	FACU	FAGACEAE
QUEIMB	2	Quercus imbricaria	JACK OAK	TREE	1	FAC-	FAGACEAE
QUELYR	7	Quercus Iyrata	OVERCUP OAK	TREE	- 5	OBL	FAGACEAE
QUEMAC	5	Quercus macrocarpa	BURR OAK	TREE	1	FAC-	FAGACEAE
QUEMAR	6	Quercus marilandica	BLACKJACK OAK	TREE	5	UPL	FAGACEAE
QUEMIC	7	Quercus michauxii	BASKET OAK	TREE	-3	FACW	FAGACEAE
QUENUT	10	Quercus nuttallii	NUTTALL'S OAK	TREE	-5	OBL	FAGACEAE
QUEPAG	5	Quercus pagoda	CHERRYBARK OAK	TREE	0	FAC	FAGACEAE
QUEPAL	4	Quercus palustris	PIN OAK	TREE	-3	FACW	FAGACEAE
QUEPHE	7	Quercus phellos	WILLOW OAK	TREE	-3	FACW	FAGACEAE
QUEPRA	5	Quercus prinoides v. acuminata	CHINKAPIN OAK	TREE	4	FACU-	FAGACEAE
QUEPRN	9	Quercus prinus	BASKET OAK	TREE	4	FACU-	FAGACEAE
QUERUB	5	Quercus rubra	NORTHERN RED OAK	TREE	3	FACU	FAGACEAE
QUESHS	7	Quercus shumardii	SHUMARD'S OAK	TREE	-2	FACW-	FAGACEAE
QUESSC	7	Quercus shumardii v. schneckii	SCHNECK'S RED OAK	tree	-2	FACW-	FAGACEAE

Common Name	Physiognomy	W	Wet	Family
POST OAK	TREE	4	FACU-	FAGACEAE
BLACK OAK	TREE	5	UPL	FAGACEAE
LITTLE-LEAF BUTTERCUP	A-FORB	- 2	FACW.	RANUNCULACEAE
TALL BUTTERCUP	P-FORB	2	FACW-	RANUNCULACEAE
SPEARWORT	P-FORB	-5	OBL	RANUNCULACEAE
CORN BUTTERCUP	A-FORB	0	FAC	RANUNCULACEAE
BULBOUS BUTTERCUP	P-FORB	-3	FACW	RANUNCULACEAE
CAROLINA BUTTERCUP	P-FORB	-3	FACW	RANUNCULACEAE
SEASIDE CROWFOOT	P-FORB	-5	OBL	RANUNCULACEAE
EARLY BUTTERCUP	P-FORB	3	FACU	RANUNCULACEAE
LESSER CELANDINE	P-FORB	5	UPL	RANUNCULACEAE
YELLOW WATER BUTTERCUP	P-FORB	-5	OBL	RANUNCULACEAE
SMALL YELLOW WATER-CROWFOOT	P-FORB	-4	FACW +	RANUNCULACEAE
HARVEY'S BUTTERCUP	P-FORB	4	FACU.	RANUNCULACEAE
ROUGH BUTTERCUP	P-FORB	0	FAC	RANUNCULACEAE
SPEARWORT	A-FORB	- 5	OBL	RANUNCULACEAE
WHITE WATER CROWFOOT	P-FORB	-5	OBL	RANUNCULACEAE
SMALL-FLOWERED CROWFOOT	P-FORB	1	FAC-	RANUNCULACEAE
SMALL-FLOWERED CROWFOOT	A-FORB	0	FAC	RANUNCULACEAE
BRISTLY CROWFOOT	A-FORB	-5	OBL	RANUNCULACEAE
SMALL SPEARWORT	A-FORB	-5	OBL	RANUNCULACEAE
HOOKED BUTTERCUP	A-FORB	-3	FACW	RANUNCULACEAE
CREEPING BUTTERCUP	P-FORB	-1	FAC +	RANUNCULACEAE
PLAINS BUTTERCUP	P-FORB	5	UPL	RANUNCULACEAE
PAPILLOSE BUTTERCUP	A-FORB	0	FAC	RANUNCULACEAE
CURSED CROWFOOT	A-FORB	-5	OBL	RANUNCULACEAE
SWAMP BUTTERCUP	P-FORB	-4	FACW +	RANUNCULACEAE
SWAMP BUTTERCUP	P-FORB	-5	OBL	RANUNCULACEAE
WHITE WATER CROWFOOT	P-FORB	-5	OBL	RANUNCULACEAE
WILD RADISH	A-FORB	5	UPL	BRASSICACEAE
RADISH	A-FORB	5	UPL	BRASSICACEAE
WILD RAPE	A-FORB	5	UPL	BRASSICACEAE
LONG-HEADED CONEFLOWER	P-FORB	5	UPL	ASTERACEAE
YELLOW CONEFLOWER	P-FORB	5	UPL	ASTERACEAE
BLOWOUT GRASS	P-GRASS	5	UPL	POACEAE
JAPANESE WISTERIA	W-VINE	5	UPL	FABACEAE
CHINESE WISTERIA	W-VINE	5	UPL	FABACEAE
DYER'S ROCKET	A-FORB	5	UPL	RESEDACEAE
ALDER BUCKTHORN	SHRUB	-5	OBL	RHAMNACEAE
CAROLINA BUCKTHORN	SHRUB	1	FAC-	RHAMNACEAE
COMMON BUCKTHORN	SHRUB	3	FACU	RHAMNACEAE
DAHURIAN BUCKTHORN	SHRUB	5	UPL	RHAMNACEAE
GLOSSY BUCKTHORN	SHRUB	-1	FAC +	RHAMNACEAE

Family
RHAMNACEAE
RHAMNACEAE
RHAMNACEAE
POLYGONACEAE
MELASTOMATACEAE
MELASTOMATACEAE
ERICACEAE
ERICACEAE
ROSACEAE
ANACARDIACEAE
ANACARDIACEAE
ANACARDIACEAE
ANACARDIACEAE
ANACARDIACEAE
ANACARDIACEAE
CYPERACEAE
CYPERACEAE
CYPERACEAE
CYPERACEAE
CYPERACEAE
CYPERACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
GROSSULARIACEAE
EUPHORBIACEAE
FABACEAE
FABACEAE
FABACEAE
BRASSICACEAE
BRASSICACEAE
BRASSICACEAE
BRASSICACEAE
BRASSICACEAE
BRASSICACEAE
BRASSICACEAE
ROSACEAE
ROSACEAE
ROSACEAE
RAS
的
 Physiognomy

Common Name	Physiognomy	W	Wet	Family
PASTURE ROSE	SHRUB	4	FACU-	ROSACEAE
SWEETBRIER	SHRUB	5	UPL	ROSACEAE
FRENCH ROSE	SHRUB	5	UPL	ROSACEAE
SMALL SWEETBRIER	SHRUB	3	FACU	ROSACEAE
MUSK ROSE	SHRUB	5	UPL	ROSACEAE
JAPANESE ROSE	SHRUB	3	FACU	ROSACEAE
SWAMPY ROSE	SHRUB	-5	OBL	ROSACEAE
RED-LEAVED ROSE	SHRUB	5	UPL	ROSACEAE
ROUGH ROSE	SHRUB	5	UPL	ROSACEAE
RUGOSE ROSE	SHRUB	3	FACU	ROSACEAE
ILLINOIS ROSE	SHRUB	2	FACU +	ROSACEAE
BURNET ROSE	SHRUB	5	UPL	ROSACEAE
SUNSHINE ROSE	SHRUB	5	UPL	ROSACEAE
VIRGINIA ROSE	SHRUB	0	FAC	ROSACEAE
WHEELWORT	A-FORB	-5	OBL	LYTHRACEAE
COMMON BLACKBERRY	SHRUB	2	FACU +	ROSACEAE
HIGHBUSH BLACKBERRY	SHRUB	1	FAC-	ROSACEAE
HIMALAYA BERRY	SHRUB	5	UPL	ROSACEAE
ARCHING DEWBERRY	SHRUB	5	UPL	ROSACEAE
COMMON DEWBERRY	SHRUB	4	FACU-	ROSACEAE
SWAMPY DEWBERRY	SHRUB	-3	FACW	ROSACEAE
CULTIVATED RASPBERRY	SHRUB	2	FACU +	ROSACEAE
CUT-LEAVED BLACKBERRY	SHRUB	5	UPL	ROSACEAE
BLACK RASPBERRY	SHRUB	3	FACU	ROSACEAE
PURPLE FLOWERING RASPBERRY	SHRUB	5	UPL	ROSACEAE
YANKEE BLACKBERRY	SHRUB	1	FAC-	ROSACEAE
WINEBERRY	SHRUB	5	UPL	ROSACEAE
DWARF RASPBERRY	P-FORB	-4	FACW +	ROSACEAE
BRISTLY BLACKBERRY	P-FORB	5	UPL	ROSACEAE
RED RASPBERRY	P-FORB	-2	FACW-	ROSACEAE
SOUTHERN DEWBERRY	SHRUB	2	FACU +	ROSACEAE
ORANGE CONEFLOWER	P-FORB	-5	OBL	ASTERACEAE
SULLIVANT'S ORANGE CONEFLOWER	P-FORB	-5	OBL	ASTERACEAE
LARGE BLACK-EYED SUSAN	P-FORB	5	UPL	ASTERACEAE
BLACK-EYED SUSAN	P-FORB	3	FACU	ASTERACEAE
WILD GOLDEN GLOW	P-FORB	-4	FACW +	ASTERACEAE
MISSOURI BLACK-EYED SUSAN	P-FORB	4	FACU-	AStERACEAE
SWEET BLACK-EYED SUSAN	P-FORB	-3	FACW	AStERACEAE
BROWN-EYED SUSAN	A-FORB	1	FAC-	AStERACEAE
WILD PETUNIA	P-FORB	5	UPL	ACANTHACEAE
HAIRY RUELLIA	P-FORB	4	FACU-	ACANTHACEAE
HAIRY RUELLIA	P-FORB	4	FACU-	ACANTHACEAE
STALKED WILD PETUNIA	P-FORB	5	UPL	ACANTHACEAE

Family
ACANTHACEAE
POLYGONACEAE
RUPPIACEAE
RUTACEAE
GENTIANACEAE
GENTIANACEAE
CARYOPHYLLACEAE
ALISMATACEAE
ALISMATACEAE
ALISMATACEAE
ALISMATACEAE
ALISMATACEAE
ALISMATACEAE
ALISMATACEAE
CHENOPODIACEAE
SALICACEAE
SALICACAE
SAL

Common Name
SMOOTH RUELLIA
FIELD SORREL
PALE DOCK
CURLY DOCK
CRESTED DOCK
SOUR DOCK
LONG－LEAVED DOCK
GOLDEN DOCK
MEXICAN DOCK
BITTER DOCK
GREAT WATER DOCK
PATIENCE DOCK
SWAMP DOCK
DITCH GRASS
RUE
ROSE GENTIAN
PRAIRIE ROSE GENTIAN
PEARLWORT
SHORT－BEAKED ARROWLEAF
THICK－STALKED ARROWHEAD
ARUM－LEAVED ARROWHEAD
GRASS－LEAVED ARROWHEAD
COMMON ARROWHEAD
LONG－BEAKED ARROWHEAD
STIFF ARROWHEAD
GLASSWORT
WHITE WILLOW
WEEPING WILLOW
PEACH－LEAVED WILLOW
BEAKED WILLOW
HOARY WILLOW
GOAT WILLOW
CAROLINA WILLOW
GRAY WILLOW
PUSSY WILLOW
HEART－LEAVED WILLOW
SANDBAR WILLOW
CRACK WILLOW
HYBRID BLACK WILLOW
BLUE－LEAF WILLOW
PRAIRIE WILLOW
SHINING WILLOW
BLACK WILLOW

CC Scientific Name

$$
\begin{aligned}
& \text { Ruellia strepens } \\
& \text { RUMFX ACETOS }
\end{aligned}
$$

RUMEX ACETOSELLA Rumex altissimus RUMEX CRISPUS RUMEX CRISTATUS Rumex hastatulus RUMEX LONGIFOLIUS Rumex maritimus v ．fueginus Rumex mexicanus RUMEX OBTUSIFOLIUS Rumex orbiculatus RUMEX PATIENTIA Rumex verticillatus

Ruppia maritima v．rostrata RUTA GRAVEOLENS Sabatia angularis Sabatia campestris SAGINA PROCUMBENS Sagittaria brevirostra Sagittaria calycina Sagittaria cuneata Sagittaria graminea Sagittaria latifolia Sagittaria longirostra Sagittaria rigida SALIX ALBA
SALIX ALBA 'TRISTIS' Salix amygdaloides Salix bebbiana Salix candida SALIX CAPREA Salix caroliniana SALIX CINEREA Salix discolor Salix eriocephala Salix exigua SALIX FRAGILIS Salix \times glat felteri Salix glaucophylloides v ．glaucophylla Salix humilis Salix lucida Salix nigra

Acronym
Acronym RUESTR RUMALT RUMCRP RUMCRT RUMHAS RUMLON RUMMAR RUMMEX RUMOBT RUMORB RUMPAT RUMVER RUPMAR RUTGRA SABANG SABCAM SAGPRO

 SAGCAL \begin{tabular}{l}
z

$\substack{3 \\
0 \\
\vdots \\
0 \\
\hline}$

 SAGGRA SAGLAT SAGLON SAGRIG SALEUR SALALA SALALT SALAMY SALBEB SALCAN

ड

$\frac{1}{4}$

む

\hline
\end{tabular} SALCAR SALCIN ふ

 SALEXI SALFRA SALGLA发 SALHUM号
APIINDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
SALPED	10	Salix pedicellaris v. hypoglauca	BOG WILLOW	SHRUB	-5	OBL	SALICACEAE
SALPEN	-	SALIX PENTANDRA	BAY-LEAVED WILLOW	SHRUB	5	UPL	SALICACEAE
SALPET	6	Salix petiolaris	MEADOW WILLOW	SHRUB	- 5	OBL	SALICACEAE
SALPUP	-	SALIX PURPUREA	BASKET WILLOW	SHRUB	-3	FACW	SALICACEAE
SALRIG	5	Salix rigida	HEART-LEAVED WILLOW	SHRUB	-4	FACW +	SALICACEAE
SALRUB	*	SALIX \times RUBENS	HYBRID CRACK WILLOW	TREE	-4	FACW +	SALICACEAE
SALSEC	B	Salix sericea	SILKY WILLOW	SHRUB	-5	OBL	SALICACEAE
SALSES	10	Salix serissima	AUTUMN WILLOW	SHRUB	-5	OBL	SALICACEAE
SALSYR	6	Salix \times subsericea	WILLOW	SHRUB	-5	OBL	SALICACEAE
SALSUB	10	Salix syrticola	DUNE WILLOW	SHRUB	-1	$\mathrm{FAC}+$	SALICACEAE
SALCOL	-	SALSOLA COLLINA	SALTWORT	A-FORB	5	UPL	CHENOPODIACEAE
SALIBE	-	SALSOLA IBERICA	RUSSIAN THISTLE	A-FORB	3	FACU	CHENOPODIACEAE
SALAZN	9	Salvia azurea v. grandiflora	BLUE SAGE	P-FORB	5	UPL	LAMIACEAE
SALAZA	-	SALVIA AZUREA v. GRANDIFLORA	BLUE SAGE	P-FORB	5	UPL	LAMIACEAE
SALLYR	4	Salvia lyrata	CANCER WEED	P-FORB	-2	FACW-	LAMIACEAE
SALNEM	*	SALVIA NEMOROSA	WILD SAGE	P-FORB	5	UPL	LAMIACEAE
SALPRA	*	SALVIA PRATENSIS	MEADOW SAGE	P-FORB	5	UPL	LAMIACEAE
SALREF	-	SALVIA REFLEXA	ROCKY MOUNTAIN SAGE	A-FORB	5	UPL	LAMIACEAE
SALVER	-	SALVIA VERTICILLATA	SAGE	P-FORB	5	UPL	LAMIACEAE
SAMCAN	2	Sambucus canadensis	COMMON ELDER	SHRUB	4	FACU-	CAPRIFOLIACEAE
SAMRAC	10	Sambucus racemosa v. pubens	RED-BERRIED ELDER	SHRUB	5	UPL	CAPRIFOLIACEAE
SAMVAL	5	Samolus valerandii	BROOKWEED	P-FORB	-5	OBL	PRIMULACEAE
SANCAD	5	Sanguinaria canadensis	BLOODROOT	P-FORB	4	FACU.	PAPAVERACEAE
SANCAE	10	Sanguisorba canadensis	AMERICAN BURNET	P-FORB	-4	FACW +	ROSACEAE
SANMIN	-	SANGUISORBA MINOR	GARDEN BURNET	P-FORB	0	FAC	ROSACEAE
SANCAS	4	Sanicula canadensis	CANADIAN BLACK SNAKEROOT	B-FORB	2	$\mathrm{FACU}+$	APIACEAE
SANGRE	2	Sanicula gregaria	CLUSTERED BLACK SNAKEROOT	P-FORB	-1	FAC +	APIACEAE
SANMAR	6	Sanicula marilandica	BLACK SNAKEROOT	P-FORB	5	UPL	APIACEAE
SANTRI	8	Sanicula trifoliata	BEAKED BLACK SNAKEROOT	B-FORB	5	UPL	APIACEAE
SANPRO	-	SANVITALIA PROCUMBENS	CREEPING ZINNIA	P-FORB	5	UPL	ASTERACEAE
SAPOFF	-	SAPONARIA OFFICINALIS	BOUNCING BET	P-FORB	3	FACU	CARYOPHYLLACEAE
SARPUR	10	Sarracenia purpurea	PITCHER PLANT	P-FORB	-5	OBL	SARRACENIACEAE
SASALB	2	Sassafras albidum	SASSAFRAS	TREE	3	FACU	LAURACEAE
SATHOR	*	SATUREJA HORTENSIS	SUMMER SAVORY	A-FORB	5	UPL	LAMIACEAE
SAUCER	5	Saururus cernuus	LIZARD'S TAIL	P-FORB	-5	OBL	SAURURACEAE
SAXFOR	10	Saxifraga forbesii	FORBES' SAXIFRAGE	P-FORB	-5	OBL	SAXIFRAGACEAE
SAXPEN	10	Saxifraga pensylvanica	SWAMP SAXIFRAGE	P-FORB	-5	OBL	SAXIFRAGACEAE
SAXVIR	10	Saxifraga virginiensis	EARLY SAXIFRAGE	P-FORB	1	FAC-	SAXIFRAGACEAE
SCHPAN	5	Schedonnardus paniculatus	TUMBLE GRASS	P-GRASS	5	UPL	POACEAE
SCHPAL	10	Scheuchzeria palustris v. americana	ARROW-GRASS	P-FORB	-5	OBL	JUNCAGINACEAE
SCHPUR	10	Schizachne purpurascens	FALSE MELIC GRASS	P-GRASS	2	$\mathrm{FACU}+$	POACEAE
SCHSCO	5	Schizachyrium scoparium	LITTLE BLUESTEM	P-GRASS	4	FACU-	POACEAE
SCHUNC	7	Schrankia uncinata	CAT-CLAW	H-VINE	5	UPL	MIMOSACEAE

APPI:NDIX: Vegetation of Illmois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
SCISIB	*	SCILLA SIBIRICA	SIBERIAN SQUILL	P-FORB	5	UPL	LILIACEAE
SCIACU	6	Scirpus acutus	HEARD-STEMMED BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIAME	3	Scirpus americanus	CHAIRMAKER'S RUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIATC	10	Scirpus atrocinctus	DARK-COLORED RUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIATR	4	Scirpus atrovirens	DARK GREEN RUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCICES	10	Scirpus cespitosus v. callosus	TUFTED BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCICYP	5	Scirpus cyperinus	WOOL GRASS	P-SEDGE	-5	OBL	CYPERACEAE
SCIFLU	3	Scirpus fluviatilis	RIVER BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIGEO	4	Scirpus georgianus	BRISTLELESS DARK GREEN RUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIHAL	10	Scirpus hallii	HALL'S TUFTED BULRUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCIHAT	5	Scirpus hattorianus	EARLY DARK GREEN RUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIHET	7	Scirpus heterochaetus	SLENDER BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIKOI	8	Scirpus koilolepis	KEELED BULRUSH	A-SEDGE	-4	FACW +	CYPERACEAE
SCIMIM	7	Scirpus micranthus	SMALL-FLOWERED RUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCIMID	7	Scirpus micranthus v. drummondii	SMALL-FLOWERED RUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCIMIP	10	Scirpus microcarpus	SMALL-FRUITED RUSH	P-SEDGE	- 5	OBL	CYPERACEAE
SCIMUC	-	SCIRPUS MUCRONATUS	POINTED RUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCIPAL	4	Scirpus paludosus	ALKALI BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIPED	10	Scirpus pedicellatus	STALKED WOOL GRASS	P-SEDGE	-5	OBL	CYPERACEAE
SCIPEN	3	Scirpus pendulus	RED BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIPOL	10	Scirpus polyphyllus	LEAFY WOOL GRASS	P-SEDGE	-5	OBL	CYPERACEAE
SCIPUR	10	Scirpus purshianus	PURSH'S TUFTED BULRUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCISMI	10	Scirpus smithii	SMITH'S TUFTED BULRUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCISUB	10	Scirpus subterminalis	WATER BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCITAB	. 4	Scirpus tabernaemontanii	GREAT BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCITOR	9	Scirpus torreyi	TORREY'S BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCIVER	10	Scirpus verecundus	BULRUSH	P-SEDGE	-5	OBL	CYPERACEAE
SCLANN	*	SCLERANTHUS ANNUUS	KNAWEL	A-FORB	3	FACU	CARYOPHYLLACEAE
SCLOLI	10	Scleria oligantha	SMOOTH-SEEDED NUT RUSH	P-SEDGE	2	$\mathrm{FACU}+$	CYPERACEAE
SCLPAP	10	Scleria pauciflora	FEW-FLOWERED NUT RUSH	P-SEDGE	3	FACU	CYPERACEAE
SCLPAC	10	Scleria pauciflora v. caroliniana	FEW-FLOWERED NUT RUSH	P-SEDGE	3	FACU	CYPERACEAE
SCLRET	10	Scleria reticularis	NETTED NUT RUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCLTRI	9	Scleria triglomerata	TALL NUT GRASS	P-SEDGE	0	FAC	CYPERACEAE
SCLVER	10	Scleria verticillata	LOW NUT RUSH	A-SEDGE	-5	OBL	CYPERACEAE
SCLDUR	*	SCLEROCHLOA DURA	FAIRGROUND GRASS	A-GRASS	5	UPL	POACEAE
SCRLAN	5	Scrophularia lanceolata	EARLY FIGWORT	P-FORB	2	$\mathrm{FACU}+$	SCROPHULARIACEAE
SCRMAR	4	Scrophularia marilandica	LATE FIGWORT	P-FORB	4	FACU-	SCROPHULARIACEAE
SCUAUS	6	Scutellaria australis	SMALL SKULLCAP	P-FORB	3	FACU	LAMIACEAE
SCUELL	6	Scutellaria elliptica	HAIRY SKULLCAP	B-FORB	5	UPL	LAMIACEAE
SCUGAL	6	Scutellaria galericulata	MARSH SKULLCAP	P-FORB	-5	OBL	LAMIACEAE
SCUINC	5	Scutellaria incana	DOWNY SKULLCAP	P-FORB	5	UPL	LAMIACEAE
SCULAT	4	Scutellaria lateriflora	MAD-DOG SKULLCAP	P-FORB	- 5	OBL	LAMIACEAE
SCULEO	5	Scutellaria leonardii	SMALL SKULLCAP	P-FORB	3	FACU	LAMIACEAE

Acronym	CC	Scientific Name
SCUNER	5	Scutellaria nervosa
SCuOVA	5	Scutellaria ovata
SCUPAR	6	Scutellaria parvula
SECCER	-	SECALE CEREALE
SEDACR	*	SEDUM ACRE
SEDALO	-	SEDUM ALBO-ROSEUM
SEDALU	*	SEDUM ALBUM
SEDPUL	8	Sedum pulchellum
SEDPUR	-	SEDUM PURPUREUM
SEDRUP	*	SEDUM RUPESTRE
SEDSAR	-	SEDUM SARMENTOSUM
SEDSPU	*	SEDUM SPURIUM
SEDTEL	10	Sedum telephioides
SEDTER	9	Sedum ternatum
SELAPO	7	Selaginella apoda
SELECL	10	Selaginella eclipes
SELRUP	8	Selaginella rupestris
SENAUR	4	Senecio aureus
SENGLA	0	Senecio glaballus
SENJAC	*	SENECIO JACOBAEA
SENOBO	8	Senecio obovatus
SENPAU	3	Senecio pauperculus
SENPLA	6	Senecio plattensis
SENVIS	*	SENECIO VISCOSUS
SENVUL	*	SENECIO VULGARIS
SESMAC	3	Sesbania macrocarpa
SETFAB	*	SETARIA FABERI
SETGEN	6	Setaria geniculata
SETGLA	*	SETARIA GLAUCA
SETITA	*	SETARIA ITALICA
SETVER	*	SETARIA VERTICILLATA
SETVIV	*	SETARIA VIRIDIS
SETVIM	*	SETARIA VIRIDIS v. MAJOR
SHECAN	10	Shepherdia canadensis
SHEARV	*	SHERARDIA ARVENSIS
SIBVIR	0	Sibara virginica
SICANG	3	Sicyos angulatus
SIDELL	5	Sida elliottii
SIDSPI	*	SIDA SPINOSA
SIDHIS	5	Sidopsis hispida
SILANT	1	Silene antırrhina
SILARM	*	SILENE ARMERIA
SILCSE	-	SILENE CSEREI

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
SILCUC	*	SILENE CUCUBALUS	BLADDER CAMPION	P-FORB	5	UPL	CARYOPHYLLACEAE
SILDIC	*	SILENE DICHOTOMA	FORKED CATCHFLY	B-FORB	5	UPL	CARYOPHYLLACEAE
SILNIV	8	Silene nivea	SNOWY CAMPION	P-FORB	-3	FACW	CARYOPHYLLACEAE
SILNOC	-	SILENE NOCTIFLORA	NIGHT-FLOWERING CATCHFLY	A-FORB	5	UPL	CARYOPHYLLACEAE
SILOVA	10	Silene ovata	WOODLAND CATCHFLY	P-FORB	5	UPL	CARYOPHYLLACEAE
SILREG	9	Silene regia	ROYAL CATCHFLY	P-FORB	5	UPL	CARYOPHYLLACEAE
SILSTE	6	Silene stellata	STARRY CAMPION	P-FORB	5	UPL	CARYOPHYLLACEAE
SILVIR	9	Silene virginica	FIRE PINK	P-FORB	5	UPL	CARYOPHYLLACEAE
SILINT	5	Silphium integrifolium	ROSIN WEED	P-FORB	5	UPL	ASTERACEAE
SILLAC	5	Silphium laciniatum	COMPASS PLANT	P-FORB	4	FACU-	AStERACEAE
SILPER	4	Silphium perfoliatum	CUP PLANT	P-FORB	-2	FACW-	AStERACEAE
SILSPE	*	SILPHIUM SPECIOSUM	ROSIN WEED	P-FORB	5	UPL	ASTERACEAE
SILTER	4	Silphium terebinthinaceum	PRAIRIE DOCK	P-FORB	1	FAC-	ASTERACEAE
SILTRI	10	Silphium trifoliatum	ROSIN WEED	P-FORB	5	UPL	ASTERACEAE
SISALT	*	SISYMBRIUM ALTISSIMUM	TUMBLE MUSTARD	A-FORB	3	FACU	BRASSICACEAE
SISLOE	-	SISYMBRIUM LOESELII	TALL HEDGE MUSTARD	A-FORB	5	UPL	BRASSICACEAE
SISOFF	*	SISYMBRIUM OFFICINALE	HEDGE MUSTARD	A-FORB	5	UPL	BRASSICACEAE
SISALB	4	Sisyrinchium albidum	COMMON BLUE-EYED GRASS	P-FORB	3	FACU	IRIDACEAE
SISANG	5	Sisyrinchium angustifolium	STOUT BLUE-EYED GRASS	P-FORB	-2	FACW-	IRIDACEAE
SISATL	10	Sisyrinchium atlanticum	EASTERN BLUE-EYED GRASS	P-FORB	-3	FACW	IRIDACEAE
SISCAM	6	Sisyrinchium campestre	PRAIRIE BLUE-EYED GRASS	P-FORB	5	UPL	IRIDACEAE
SISMON	9	Sisyrinchium montanum	MOUNTAIN BLUE-EYED GRASS	P-FORB	-1	FAC+	IRIDACEAE
SISMUC	9	Sisyrinchium mucronatum	BLUE-EYED GRASS	P-FORB	-2	FACW.	IRIDACEAE
SITHYS	*	SITANION HYSTRIX	BOTTLEBRUSH SQUIRREL TAIL	P-GRASS	5	UPL	POACEAE
SIUSUA	5	Sium suave	WATER PARSNIP	P-FORB	-5	OBL	APIACEAE
SMIRAC	4	Smilacina racemosa	FEATHERY FALSE SOLOMON SEAL	P-FORB	3	FACU	LILIACEAE
SMISTE	5	Smilacina stellata	STARRY FALSE SOLOMON SEAL	P-FORB	1	FAC-	LILIACEAE
SMIBON	5	Smilax bona-nox	BULL BRIER	W-VINE	2	FACU +	SMILACACEAE
SMIECI	5	Smilax ecirrhata	UPRIGHT CARRION FLOWER	P-FORB	5	UPL	SMILACACEAE
SMIGLA	6	Smilax glauca	GREEN BRIER	W-VINE	3	FACU	SMILACACEAE
SMIHER	4	Smilax herbacea	CARRION FLOWER	H-VINE	0	FAC	SMILACACEAE
SMIHIS	3	Smilax hispida	BRISTLY GREEN BRIER	W-VINE	0	FAC	SMILACACEAE
SMIILL	5	Smilax illinoensis	ILLINOIS CARRION FLOWER	P-FORB	5	UPL	SMILACACEAE
SMILAS	4	Smilax lasioneuron	COMMON CARRION FLOWER	H-VINE	5	UPL	SMILACACEAE
SMIPUL	5	Smilax pulverulenta	DARK GREEN CARRION FLOWER	H-VINE	3	FACU	SMILACACEAE
SMIROT	4	Smilax rotundifolia	CAT BRIER	W-VINE	0	FAC	SMILACACEAE
SOLCAR	0	Solanum carolinense	HORSE NETTLE	P_FORB	4	FACU-	SOLANACEAE
SOLCOR	*	SOLANUM CORNUTUM	BUFFALO BUR	A-FORB	5	UPL	SOLANACEAE
SOLDIM	*	SOLANUM DIMIDIATUM	TORREY'S HORSE NETTLE	P-FORB	5	UPL	SOLANACEAE
SOLDUL	*	SOLANUM DULCAMARA	BITTERSWEET NIGHTSHADE	W-VINE	0	FAC	SOLANACEAE
SOLELA	*	SOLANUM ELAEAGNIFOLIUM	WHITE HORSE NETTLE	P-FORB	5	UPL	SOLANACEAE
SOLHET	*	SOLANUM HETERODOXUM v. NOVOMEXICANUM	PRICKLY HORSE NETTLE	P-FORB	5	UPL	SOLANACEAE
SOLPTY	0	Solanum ptycanthum	BLACK NIGHTSHADE	A-FORB	4	FACU-	SOLANACEAE

APPINIDIX: Vegetation of Illmors Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
SOLSAR	*	SOLANUM SARACHOIDES	HAIRY NIGHTSHADE	A.FORB	5	UPL	SOLANACEAE
SOLTRI	-	SOLANUM TRIFLORUM	CUT-LEAVED NIGHISHADE	A-FORB	5	UPL	SOLANACEAE
SOLTUB	-	SOLANUM TUBEROSUM	POTATO	P-FORB	5	UPL	SOLANACEAE
SOLARG	10	Solidago arguta	SHARP-TOOTHED GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLBIC	7	Solidago bicolor	SILVERROD	P-FORB	5	UPL	ASTERACEAE
SOLBOO	10	Solidago boottii	BOOTT'S GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLBUC	8	Solidago buckleyi	BUCKLEY'S GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLCAE	7	Solidago caesia	BLUESTEM GOLDENROD	P-FORB	3	FACU	ASTERACEAE
SOLCAN	1	Sotidago canadensis	CANADA GOLDENROD	P-FORB	3	FACU	ASTERACEAE
SOLDRU	6	Solidago drummondii	DRUMMOND'S GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLFLE	6	Solidago flexicaulis	BROAD-LEAVED GOLDENROD	P-FORB	3	FACU	ASTERACEAE
SOLGIG	3	Solidago gigantea	LATE GOLDENROD	P-FORB	-3	FACW	ASTERACEAE
SOLHIS	7	Solidago hispida	WHITE GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLJUN	4	Solidago juncea	EARLY GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLLUT	10	Solidago \times lutescens	UPLAND ASTER	P-FORB	0	FAC	ASTERACEAE
SOLMIS	4	Solidago missouriensis	MISSOURI GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLNEM	3	Solidago nemoralis	OLD FIELD GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLOHI	10	Solidago ohioensis	OHIO GOLDENROD	P-FORB	-5	OBL	ASTERACEAE
SOLPAT	9	Solidago patula	ROUGH-LEAVED GOLDENRODVED	P-FORB	- 5	OBL	ASTERACEAE
SOLPET	B	Solidago petiolaris	DOWNY GOLDENROD	P.FORB	5	UPL	ASTERACEAE
SOLPTA	9	Solidago ptarmicoides	STIFF ASTER	P.FORB	5	UPL	ASTERACEAE
SOLRAD	7	Solidago radula	ROUGH GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLRID	7	Solidago riddellii	RIDDELL'S GOLDENROD	P-FORB	-5	OBL	ASTERACEAE
SOLRIG	4	Solidago rigida	RIGID GOLDENROD	P-FORB	4	FACU.	ASTERACEAE
SOLRUG	8	Solidago rugosa	ROUGH GOLDENROD	P-FORB	- 1	$\mathrm{FAC}+$	ASTERACEAE
SOLSCI	10	Solidago sciaphila	CLIFF GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLSEM	*	SOLIDAGO SEMPERVIRENS	SEASIDE GOLDENROD	P.FORB	-2	FACW.	ASTERACEAE
SOLSPE	7	Solidago speciosa	SHOWY GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLSPH	10	Solidago sphacelata	BLIGHTED GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SOLSTR	10	Solidago strigosa	HAIRY GOLDENROD	P.FORB	5	UPL	ASTERACEAE
SOLULI	10	Solidago uliginosa	BOG GOLDENROD	P-FORB	- 5	OBL	ASTERACEAE
SOLULM	5	Solidago ulmifolia	ELM-LEAVED GOLDENROD	P-FORB	5	UPL	ASTERACEAE
SONARA	*	SONCHUS ARVENSIS	FIELD SOW THISTLE	P-FORB	1	FAC.	ASTERACEAE
SONARG	*	SONCHUS ARVENSIS v. GLABRESCENS	FIELD SOW THISTLE	P-FORB	1	FAC	ASTERACEAE
SONASP	*	SONCHUS ASPER	PRICKLY SOW THISTLE	A-FORB	0	FAC	ASTERACEAE
SONOLE	*	SONCHUS OLERACEUS	COMMON SOW THISTLE	A.FORB	3	FACU	ASTERACEAE
SORAUC	*	SORBUS AUCUPARIA	EUROPEAN MOUNTAIN ASH	TREE	5	UPL	ROSACEAE
SORDEC	10	Sorbus decora	AMERICAN MOUNTAIN ASH	TREE	-1	$\mathrm{FAC}+$	ROSACEAE
SORNUT	4	Sorghastrum nutans	INDIAN GRASS	P.GRASS	2	$\mathrm{FACU}+$	POACEAE
SORALM	*	SORGHUM \times ALMUM	SORGHUM GRASS	P-GRASS	5	UPL	POACEAE
SORBIC	*	SORGHUM BICOLOR	SORGHUM	A-GRASS	5	UPL	POACEAE
SORHAL	*	SORGHUM HALEPENSE	JOHNSON GRASS	P-GRASS	3	FACU	POACEAE
SORSUD	*	SORGHUM SUDANENSE	SUDAN GRASS	A-GRASS	5	UPL	POACEAE

Acronym CC Scientific Name
SPAAME 10 Sparganium americanum SPAAME
SPAAND

SPACHL

SPAMIN
SPAPEC
SPEARV
SPEMAR
$\sum_{\substack{\sim \\ \omega}}^{0}$ $\stackrel{\infty}{\stackrel{\pi}{山}}$
$\stackrel{4}{0}$
$\stackrel{1}{\sim}$
$\stackrel{1}{\infty}$ I
U
㞻
\vdots SPEINE $\frac{\llcorner }{\frac{\Sigma}{2}}$ \circ
$\stackrel{\circ}{\infty}$
$\frac{1}{2}$
$\frac{1}{n}$ \sum_{∞}^{∞}
$\frac{1}{\circ}$
$\frac{1}{a}$
ω SPIMAR SPIALB $\frac{a}{\frac{a}{a}}$ $\stackrel{\llcorner }{\stackrel{⿺}{\bar{o}}}$ $\stackrel{\rightharpoonup}{c}$
$\frac{2}{0}$
心 \sum_{0}
$\frac{1}{\infty}$ $\frac{\pi}{4}$
$\frac{0}{0}$
 SPILAC SPILUC $\sum_{\substack{0 \\ 0}}^{\substack{0}}$ 4
$\frac{2}{a}$
$\frac{2}{\infty}$
 $\stackrel{\infty}{\stackrel{\infty}{a}}$ $\stackrel{\substack{\sim \\ 山}}{\stackrel{\rightharpoonup}{\omega}}$ SPIPOL SPIPUN SPOASP SPOCLA 2
0
0
0
0
0 SPOHET SPONEG N
0
0
0
i SPOPYR SPOVAG STAASP STABYZ

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
STANUT	10	Stachys nuttallii	HEART-LEAVED HEDGE NETTLE	P-FORB	5	UPL	LAMIACEAE
STAPAL	5	Stachys palustris	WOUNDWORT	P-FORB	-5	OBL	LAMIACEAE
STATET	5	Stachys tenuifolia	SMOOTH HEDGE NETTLE	P-FORB	-5	OBL	LAMIACEAE
STATEH	5	Stachys tenuifolia v. hispida	MARSH HEDGE NETTLE	P-FORB	-5	OBL	LAMIACEAE
STATRI	5	Staphylea trifolia	BLADDERNUT	SHRUB	0	FAC	STAPHYLEACEAE
STEGRN	*	STELLARIA GRAMINEA	STARWORT	P-FORB	5	UPL	CARYOPHYLLACEAE
STELON	6	Stellaria longifolia	STITCHWORT	P-FORB	4	FACW +	CARYOPHYLLACEAE
STEMED	-	STELLARIA MEDIA	COMMON CHICKWEED	A-FORB	3	FACU	CARYOPHYLLACEAE
STEPAL	*	STELLARIA PALLIDA	SAND CHICKWEED	A-FORB	3	FACU	CARYOPHYLLACEAE
STEPUB	10	Stellaria pubera	GREAT CHICKWEED	P-FORB	5	UPL	CARYOPHYLLACEAE
STEGRM	10	Stenanthium gramineum	FEATHERBELLS	P-FORB	0	FAC	LILIACEAE
STICOM	*	STIPA COMATA	NEEDLE-AND-THREAD	P-GRASS	5	UPL	POACEAE
STISPA	6	Stipa spartea	PORCUPINE GRASS	P-GRASS	5	UPL	POACEAE
STIVIR	-	STIPA VIRIDULA	GREEN NEEDLE GRASS	P-GRASS	5	UPL	POACEAE
STRHEL	3	Strophostyles helvola	TRAILING WILD BEAN	A-FORB	-1	$\mathrm{FAC}+$	FABACEAE
STRLEI	4	Strophostyles leiosperma	SMALL WILD BEAN	A-FORB	5	UPL	FABACEAE
STRUMB	5	Strophostyles umbellata	CLUSTERED WILD BEAN	P-FORB	3	FACU	FABACEAE
STYPIC	9	Stylisma pickeringii v. pattersonii	PATTERSON BINDWEED	P-FORB	5	UPL	CONVOLVULACEAE
STYDIP	9	Stylophorum diphyllum	CELANDINE POPPY	P-FORB	5	UPL	PAPAVERACEAE
STYBIF	5	Stylosanthes biflora	PENCIL FLOWER	P-FORB	5	UPL	FABACEAE
STYAME	10	Styrax americana	AMERICAN STORAX	SHRUB	-5	OBL	STYRACACEAE
STYGRA	10	Styrax grandifolia	LARGE-LEAVED STORAX	SHRUB	5	UPL	STYRACACEAE
SUADEP	*	SUAEDA DEPRESSA	SEA BLITE	A-FORB	-3	FACW	CHENOPODIACEAE
SULREN	10	Sullivantia renifolia	SULLIVANT'S SAXIFRAGE	P-FORB	5	UPL	SAXIFRAGACEAE
SYMALA	B	Symphoricarpos albus	SNOWBERRY	SHRUB	4	FACU.	CAPRIFOLIACEAE
SYMALL	*	SYMPHORICARPOS ALBUS v. LAEVIGATUS	GARDEN SNOWBERRY	SHRUB	5	UPL	CAPRIFOLIACEAE
SYMOCC	6	Symphoricarpos occidentalis	WOLFBERRY	SHRUB	5	UPL	CAPRIFOLIACEAE
SYMORB	1	Symphoricarpos orbiculatus	CORALBERRY	SHRUB	3	FACU	CAPRIFOLIACEAE
SYMOFF	*	SYMPHYTUM OFFICINALE	COMMON COMFREY	P-FORB	5	UPL	BORAGINACEAE
SYMFOE	8	Symplocarpus foetidus	SKUNK CABBAGE	P-FORB	-5	OBL	ARACEAE
SYNHIS	10	Synandra hispidula	SYNANDRA	B-FORB	0	FAC	LAMIACEAE
SYRVUL	*	SYRINGA VULGARIS	LILAC	SHRUB	5	UPL	OLEACEAE
TAEINT	7	Taenidia integerrima	YELLOW PIMPERNEL	P-FORB	5	UPL	APIACEAE
TALCAL	10	Talinum calycinum	FAME FLOWER	P-FORB	5	UPL	PORTULACACEAE
TALPAR	10	Talinum parviflorum	PRAIRIE FAME FLOWER	P-FORB	5	UPL	PORTULACACEAE
TALRUG	9	Talinum rugospermum	FAME FLOWER	P-FORB	5	UPL	PORTULACACEAE
TAMGAL	*	TAMARIX GALLICA	FRENCH TAMARISK	SHRUB	5	UPL	TAMARICACEAE
TANPAR	*	TANACETUM PARTHENIUM	FEVERFEW	P-FORB	5	UPL	ASTERACEAE
TANVUL	*	TANACETUM VULGARE	COMMON TANSY	P-FORB	5	UPL	ASTERACEAE
TARLAE	*	TARAXACUM LAEVIGATUM	RED-SEEDED DANDELION	P-FORB	5	UPL	ASTERACEAE
TAROFF	*	TARAXACUM OFFICINALE	COMMON DANDELION	P-FORB	3	FACU	ASTERACEAE
TAXDIS	7	Taxodium distichum	BALD CYPRESS	TREE	- 5	OBL	TAXODIACEAE
TAXCAN	10	Taxus canadensis	CANADA YEW	SHRUB	3	FACU	TAXACEAE

APPENDIX: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Family
TEPVIR	7	Tephrosia virginiana	GOAT'S RUE	P-FORB	5	UPL	FABACEAE
TEUCAB	3	Teucrium canadense v. boreale	GRAY GERMANDER	P-FORB	-2	FACW-	LAMIACEAE
TEUCAV	3	Teucrium canadense v. virginicum	AMERICAN GERMANDER	P-FORB	-2	FACW.	LAMIACEAE
THADEA	5	Thalia dealbata	POWDERY THALIA	P-FORB	-5	OBL	MARANTACEAE
THADAD	5	Thalictrum dasycarpum	PURPLE MEADOW RUE	P-FORB	-2	FACW-	RANUNCULACEAE
THADAH	5	Thalictrum dasycarpum v. hypoglaucum	SMOOTH MEADOW RUE	P-FORB	-2	FACW-	RANUNCULACEAE
THADIO	5	Thalictrum dioicum	EARLY MEADOW RUE	P-FORB	2	$\mathrm{FACU}+$	RANUNCULACEAE
THAREV	5	Thalictrum revolutum	WAXY MEADOW RUE	P-FORB	0	FAC	RANUNCULACEAE
THATHA	5	Thalictrum thalictroides	RUE ANEMONE	P-FORB	5	UPL	RANUNCULACEAE
THABAR	7	Thaspium barbinode	HAIRY MEADOW PARSNIP	P-FORB	5	UPL	APIACEAE
THATRT	6	Thaspium trifoliatum	PURPLE MEADOW PARSNIP	P-FORB	5	UPL	APIACEAE
THATRF	6	Thaspium trifoliatum v. flavum	YELLOW MEADOW PARSNIP	P-FORB	5	UPL	APIACEAE
THEGRA	*	THELESPERMA GRACILE	GREEN THREAD	P-FORB	5	UPL	ASTERACEAE
THENOV	10	Thelypteris noveboracensis	NEW YORK FERN	FERN	-1	FAC +	THELYPTERIDACEAE
THEPAL	7	Thelypteris palustris v. pubescens	MARSH SHIELD FERN	FERN	-4	FACW +	THELYPTERIDACEAE
THIAME	10	Thismia americana	THISMIA	P-FORB	-5	OBL	BURMANNIACEAE
THLARV	*	THLASPI ARVENSE	FIELD PENNY CRESS	A-FORB	5	UPL	BRASSICACEAE
THLPER	*	THLASPI PERFOLIATUM	PERFOLIATE PENNY CRESS	A.FORB	5	UPL	BRASSICACEAE
THUOCC	10	Thuja occidentalis	ARBOR VITAE	TREE	-5	OBL	CUPRESSACEAE
THYPAS	*	THYMELAEA PASSERINA	SPARROW WEED	A-FORB	5	UPL	THYMELAEACEAE
THYPRA	*	THYMUS PRAECOX	CREEPING THYME	A-FORB	5	UPL	LAMIACEAE
TIDLAN	*	TIDESTROMIA LANUGINOSA	WOOLLY TIDESTROMIA	A-FORB	5	UPL	AMARANTHACEAE
TILAME	5	Tilia americana	AMERICAN LINDEN	TREE	3	FACU	TILIACEAE
TILHET	10	Tilia heterophylla	WHITE BASSWOOD	TREE	4	FACU-	TILIACEAE
TIPDIS	- 7	Tipularia discolor	CRANE-FLY ORCHID	P-FORB	4	FACU-	ORCHIDACEAE
TOFGLU	10	Tofieldia glutinosa	FALSE ASPHRODEL	P-FORB	-5	OBL	LILIACEAE
TOMAUR	B	Tomanthera auriculata	EARED FALSE FOXGLOVE	A-FORB	5	UPL	SCROPHULARIACEAE
TORARV	*	TORILIS ARVENSIS	FIELD HEDGE PARSLEY	A-FORB	5	UPL	APIACEAE
TORJAP	*	TORILIS JAPONICA	JAPANESE HEDGE PARSLEY	A-FORB	5	UPL	APIACEAE
TORPAL	10	Torreyochloa pallida	PALE MANNA GRASS	P-GRASS	-5	OBL	POACEAE
TOXRAD	1	Toxicodendron radicans	POISON IVY	W-VINE	3	FACU	ANACARDIACEAE
TOXTOX	*	TOXICODENDRON TOXICARIUM	POISON OAK	SHRUB	5	UPL	ANACARDIACEAE
TOXVER	10	Toxicodendron vernix	POISON SUMAC	SHRUB	-5	OBL	ANACARDIACEAE
TRADIF	7	Trachelospermum difforme	CLIMBING DOGBANE	W-VINE	-3	FACW	APOCYNACEAE
TRABRA	7	Tradescantia bracteata	LONG-BRACTED SPIDERWORT	P-FORB	4	FACU-	COMMELINACEAE
TRAOHI	3	Tradescantia ohiensis	COMMON SPIDERWORT	P-FORB	2	$\mathrm{FACU}+$	COMMELINACEAE
TRASUB	5	Tradescantia subaspera	BROAD-LEAVED SPIDERWORT	P-FORB	5	UPL	COMMELINACEAE
TRAVIR	7	Tradescantia virginiana	VIRGINIA SPIDERWORT	P-FORB	5	UPL	COMMELINACEAE
TRACOR	9	Tragia cordata	TRAGIA	P-FORB	5	UPL	EUPHORBIACEAE
TRADUB	*	TRAGOPOGON DUBIUS	SAND GOAT'S BEARD	B-FORB	5	UPL	ASTERACEAE
TRAPOR	*	TRAGOPOGON PORRIFOLIUS	OYSTER SALSIFY	B-FORB	5	UPL	ASTERACEAE
TRAPRA	*	TRAGOPOGON PRATENSIS	COMMON GOAT'S BEARD	B-FORB	5	UPL	ASTERACEAE
TRACAR	10	Trautvetteria caroliniensis	FALSE BUGBANE	P-FORB	1	FAC-	RANUNCULACEAE

Acronym	CC	Scientlic Name	Common Name	Physiognomy	W	Wet	Family
TREAET	4	Trepocarpus aethusae	DARK GREEN CHERVIL	P-FORB	-3	FACW	APIACEAE
TRIFRS	8	Triadenum fraseri	FRASER'S ST. JOHN'S WORT	P-FORB	-5	OBL	HYPERICACEAE
TRITUB	8	Triadenum tubulosum	MARSH ST. JOHN'S WORT	P-FORB	-5	OBL	HYPERICACEAE
TRIVIG	10	Triadenum virginicum	MARSH ST, JOHN'S WORT	P-FORB	-5	OBL	HYPERICACEAE
TRIWAL	10	Triadenum walteri	MARSH ST. JOHN'S WORT	P-FORB	-5	OBL	HYPERICACEAE
TRITER	*	TRIBULUS TERRESTRIS	PUNCTURE VINE	A-FORB	5	UPL	ZYGOPHYLLACEAE
TRIINS	*	TRICHACHNE INSULARIS	SOUR GRASS	P-GRASS	5	UPL	POACEAE
TRIBOS	10	Trichomanes boschianum	FILMY FERN	FERN	-3	FACW	HYMENOPHYLLACEAE
TRIBRA	7	Trichostema brachiatum	FALSE PENNYROYAL	A.FORB	5	UPL	LAMIACEAE
TRIDIC	6	Trichostema dichotomum	BLUE CURLS	A-FORB	5	UPL	LAMIACEAE
TRIFLA	1	Tridens flavus	COMMON PURPLETOP	P-GRASS	5	UPL	POACEAE
TRISTR	4	Tridens strictus	SPIKED PURPLETOP	P-GRASS	3	FACU	POACEAE
TRIBOR	10	Trientalis borealis	STARFLOWER	P-FORB	-1	FAC +	PRIMULACEAE
TRIARV	*	TRIFOLIUM ARVENSE	RABBIT-FOOT CLOVER	A-FORB	5	UPL	FABACEAE
TRIAUM	*	TRIFOLIUM AUREUM	YELLOW HOP CLOVER	A-FORB	5	UPL	FABACEAE
TRICAM	*	TRIFOLIUM CAMPESTRE	LOW HOP CLOVER	A-FORB	5	UPL	FABACEAE
TRIDUB	*	TRIFOLIUM DUBIUM	LITTLE HOP CLOVER	A-FORB	3	FACU	FABACEAE
TRIFRG	*	TRIFOLIUM FRAGIFERUM	STRAWBERRY CLOVER	P-FORB	3	FACU	FABACEAE
TRIHYB	*	TRIFOLIUM HYBRIDUM	ALSIKE CLOVER	P-FORB	1	FAC-	FABACEAE
TRIINC	*	TRIFOLIUM INCARNATUM	CRIMSON CLOVER	A-FORB	5	UPL	FABACEAE
TRIPRA	*	TRIFOLIUM PRATENSE	RED CLOVER	P-FORB	2	$\mathrm{FACU}+$	FABACEAE
TRIREF	9	Trifolium reflexum	BUFFALO CLOVER	A-FORB	5	UPL	FABACEAE
TRIREP	*	TRIFOLIUM REPENS	WHITE CLOVER	P-FORB	2	$\mathrm{FACU}+$	FABACEAE
TRIRES	*	TRIFOLIUM RESUPINATUM	PERSIAN CLOVER	A-FORB	5	UPL	FABACEAE
TRIMAR	10	Triglochin maritima	COMMON BOG ARROW GRASS	P-FORB	-5	OBL	JUNCAGINACEAE
TRIPAL	10	Triglochin palustris	SLENDER BOG ARROW GRASS	P-FORB	-5	OBL	JUNCAGINACEAE
TRICER	10	Trillium cernuum v. macranthum	NODDING TRILLIUM	P-FORB	0	FAC	LILIACEAE
TRICUN	10	Trillium cuneatum	WEDGE TRILLIUM	P-FORB	5	UPL	LILIACEAE
TRIERE	10	Trillium erectum	ILL-SCENTED TRILLIUM	P-FORB	5	UPL	LILIACEAE
TRIFLE	7	Trillium flexipes	DECLINED TRILLIUM	P-FORB	1	FAC-	LILIACEAE
TRIGRA	B	Trillium grandiflorum	LARGE WHITE TRILLIUM	P-FORB	5	UPL	LILIACEAE
TRINIV	B	Trillium nivale	SNOW TRILLIUM	P-FORB	5	UPL	LILIACEAE
TRIREC	5	Trillium recurvatum	RED TRILLIUM	P-FORB	4	FACU-	LILIACEAE
TRISES	8	Trillium sessile	SESSILE TRILLIUM	P-FORB	4	FACU	LILIACEAE
TRIVID	9	Trillium viride	GREEN TRILLIUM	P-FORB	5	UPL	LILIACEAE
TRILEP	8	Triodanis leptocarpa	VENUS'S LOOKING GLASS	A-FORB	5	UPL	CAMPANULACEAE
TRIPEP	2	Triodanis perfoliata	VENUS'S LOOKING GLASS	A-FORB	0	FAC	CAMPANULACEAE
TRIPEB	4	Triodanis perfoliata v. biflora	VENUS'S LOOKING GLASS	A-FORB	5	UPL	CAMPANULACEAE
TRIANG	7	Triosteum angustifolium	YELLOW HORSE GENTIAN	P-FORB	5	UPL	CAPRIFOLIACEAE
TRIAUT	5	Triosteum aurantiacum	EARLY HORSE GENTIAN	P-FORB	5	UPL	CAPRIFOLIACEAE
TRIILL	5	Triosteum illinoense	ILLINOIS HORSE GENTIAN	P-FORB	5	UPL	CAPRIFOLIACEAE
TRIPEF	5	Triosteum perfoliatum	LATE HORSE GENTIAN	P-FORB	5	UPL	CAPRIFOLIACEAE
TRITRI	9	Triphora trianthophora	NODDING POGONIA	P-FORB	4	FACU-	ORCHIDACEAE

Common Name	Physiognomy	W	Wet	Family
PURPLE SANDGRASS	A-GRASS	5	UPL	POACEAE
GAMA GRASS	P-GRASS	-1	FAC +	POACEAE
WHEAT	A-GRASS	5	UPL	POACEAE
JOINTED GOAT GRASS	A-GRASS	5	UPL	POACEAE
COLT'SFOOT	P-FORB	5	UPL	ASTERACEAE
NARROW-LEAVED CATTAIL	P-FORB	-5	OBL	TYPHACEAE
HYBRID CATTAIL	P-FORB	-5	OBL	TYPHACEAE
BROAD-LEAVED CATTAIL	P-FORB	-5	OBL	TYPHACEAE
WINGED ELM	TREE	3	FACU	ULMACEAE
AMERICAN ELM	TREE	-2	FACW-	ULMACEAE
ENGLISH ELM	TREE	5	UPL	ULMACEAE
SIBERIAN ELM	TREE	5	UPL	ULMACEAE
SLIPPERY ELM	TREE	0	FAC	ULMACEAE
ROCK ELM	TREE	-1	FAC +	ULMACEAE
Clustered nettle	A-FORB	3	FACU	URTICACEAE
TALL NETTLE	P-FORB	-1	FAC+	URTICACEAE
BURNING NETTLE	A-FORB	5	UPL	URTICACEAE
HORNED BLADDERWORT	A-FORB	-5	OBL	LENTIBULARIACEAE
HUMPED BLADDERWORT	P-FORB	-5	OBL	LENTIBULARIACEAE
FLAT-LEAVED BLADDERWORT	P-FORB	-5	OBL	LENTIBULARIACEAE
SMALL BLADDERWORT	P-FORB	-5	OBL	LENTIBULARIACEAE
COMMOM BLADDERWORT	P-FORB	-5	OBL	LENTIBULARIACEAE
BELLWORT	P-FORB	5	UPL	LILIACEAE
MERRYBELLS	P-FORB	1	FAC-	LILIACEAE
COW HERB	A-FORB	5	UPL	CARYOPHYLLACEAE
EARLY LOW BLUEBERRY	SHRUB	3	FACU	ERICACEAE
FARKLEBERRY	SHRUB	3	FACU	ERICACEAE
HIGHBUSH BLUEBERRY	SHRUB	-3	FACW	ERICACEAE
LARGE CRANBERRY	SHRUB	-5	OBL	ERICACEAE
CANADA BLUEBERRY	SHRUB	-2	FACW-	ERICACEAE
SMALL CRANBERRY	SHRUB	-5	OBL	ERICACEAE
LATE LOW BLUEBERRY	SHRUB	5	UPL	ERICACEAE
DEERBERRY	SHRUB	4	FACU-	ERICACEAE
COMMON VALERIAN	P-FORB	-5	OBL	VALERIANACEAE
GARDEN HELIOTROPE	P-FORB	-4	FACW +	VALERIANACEAE
PINK VALERIAN	P-FORB	-2	FACW-	VALERIANACEAE
MARSH VALERIAN	P-FORB	-4	FACW +	VALERIANACEAE
GREAT LAKES CORN SALAD	A-FORB	1	FAC-	VALERIANACEAE
CORN SALAD	A-FORB	-3	FACW	VALERIANACEAE
EUROPEAN CORN SALAD	A-FORB	5	UPL	VALERIANACEAE
CORN SALAD	A-FORB	5	UPL	VALERIANACEAE
CORN SALAD	A-FORB	-1	FAC +	VALERIANACEAE
NORTHERN CORN SALAD	A-FORB	-3	FACW	VALERIANACEAE

Applinidix: Vegetation of Illinois Database

Acronym	CC	Scientific Name	Common Name	Physiognomy	W	Wet	Famlly
VALAME	7	Vallisneria americana	EEL GRASS	P-FORB	-5	OBL	HYDROCHARITACEAE
VERWOO	9	Veratrum woodii	FALSE HELLEBORE	P-FORB	5	UPL	LILIACEAE
VERBLA	-	VERBASCUM BLATTARIA	MOTH MULLEIN	B-FORB	4	FACU-	SCROPHULARIACEAE
VERPHL	*	VERBASCUM PHLOMOIDES	CLASPING MULLEIN	B-FORB	5	UPL	SCROPHULARIACEAE
VERSPE	-	VERBASCUM SPECIOSUM	SHOWY MULLEIN	B-FORB	5	UPL	SCROPHULARIACEAE
VERTHA	-	VERBASCUM THAPSUS	WOOLLY MULLEIN	B-FORB	5	UPL	SCROPHULARIACEAE
VERVIT	*	VERBASCUM VIRGATUM	PURPLE-STAMEN MULLEIN	B-FORB	5	UPL	SCROPHULARIACEAE
VERBRA	1	Verbena bracteata	CREEEPING VERVAIN	A-FORB	3	FACU	VERBENACEAE
VERHAS	3	Verbena hastata	BLUE VERVAIN	P-FORB	-4	FACW +	VERBENACEAE
VERSIM	4	Verbena simplex	NARROW-LEAVED VERVAIN	P-FORB	5	UPL	VERBENACEAE
VERSTR	2	Verbena stricta	HOARY VERVAIN	P-FORB	5	UPL	VERBENACEAE
VERURT	3	Verbena urticifolia	WHITE VERVIAN	P.FORB	-1	$\mathrm{FAC}+$	VERBENACEAE
VERALT	4	Verbesina alternifolia	WINGSTEM	P-FORB	-3	FACW	ASTERACEAE
VERENC	-	VERBESINA ENCELIOIDES	GOLDEN CROWNBEARD	A-FORB	0	FAC	ASTERACEAE
VERHEL	6	Verbesina helianthoides	YELLOW CROWNBEARD	P-FORB	5	UPL	ASTERACEAE
VERVIA	6	Verbesina virginica	FROSTWEED	P-FORB	4	FACU-	ASTERACEAE
VERARK	10	Vernonia arkansana	SOUTHERN IRONWEED	P-FORB	0	FAC	ASTERACEAE
VERBAL	5	Vernonia baldwinii	BALDWIN'S IRONWEED	P-FORB	5	UPL	ASTERACEAE
VERFAS	5	Vernonia fasciculata	COMMON IRONWEED	P-FORB	-3	FACW	ASTERACEAE
VERGIG	4	Vernonia gigantea	TALL IRON WEED	P-FORB	0	FAC	ASTERACEAE
VERMIS	5	Vernonia missurica	MISSOURI IRONWEED	P-FORB	-1	$\mathrm{FAC}+$	ASTERACEAE
VERAGR	-	VERONICA AGRESTIS	FIELD SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERAME	9	Veronica americana	AMERICAN BROOKLIME	P-FORB	-5	OBL	SCROPHULARIACEAE
VERARV	*	VERONICA ARVENSIS	CORN SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERCAT	7	Veronica catenata	WATER SPEEDWELL	P-FORB	-5	OBL	SCROPHULARIACEAE
VERCHA	-	VERONICA CHAMAEDRYS	GERMANDER SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERHED	-	VERONICA HEDERAEFOLIA	IVY-LEAVED SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERLON	*	VERONICA LONGIFOLIA	GARDEN SPEEDWELL	P-FORB	5	UPL	SCROPHULARIACEAE
VEROFF	-	VERONICA OFFICINALIS	COMMON SPEEDWELL	P-FORB	5	UPL	SCROPHULARIACEAE
VERPEG	0	Veronica peregrina	PURSLANE SPEEDWELL	A-FORB	. 4	FACW +	SCROPHULARIACEAE
VERPES	-	VERONICA PERSICA	BIRD'S-EYE SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERPOL	-	VERONICA POLITA	DWARF BIRD'S-EYE SPEEDWELL	A-FORB	5	UPL	SCROPHULARIACEAE
VERSCU	9	Veronica scutellata	MARSH SPEEDWELL	P-FORB	-5	OBL	SCROPHULARIACEAE
VERSER	*	VERONICA SERPYLLIFOLIA	THYME-LEAVED SPEEDWELL	P-FORB	-3	FACW	SCROPHULARIACEAE
VERTEU	*	VERONICA TEUCRIUM	WOOD SAGE SPEEDWELL	P-FORB	5	UPL	SCROPHULARIACEAE
VERVIM	6	Veronicastrum virginicum	CULVER'S ROOT	P-FORB	0	FAC	SCROPHULARIACEAE
VIBACE	9	Viburnum acerifolium	MAPLE-LEAVED ARROWWOOD	SHRUB	5	UPL	CAPRIFOLIACEAE
VIBDEN	*	VIBURNUM DENTATUM	ARROW-WOOD	SHRUB	5	UPL	CAPRIFOLIACEAE
VIBDEA	7	Viburnum dentatum v. deamii	SOUTHERN ARROWWOOD	SHRUB	0	FAC	CAPRIFOLIACEAE
VIBLAN	*	VIBURNUM LANTANA	WA YFARING TREE	SHRUB	5	UPL	CAPRIFOLIACEAE
VIBLEN	4	Viburnum lentago	NANNYBERRY	SHRUB	-1	$\mathrm{FAC}+$	CAPRIFOLIACEAE
VIBMOL	10	Viburnum molle	DOWNY ARROWWOOD	SHRUB	5	UPL	CAPRIFOLIACEAE
VIBOPU	*	VIBURNUM OPULUS	EUROPEAN HIGH-BUSH CRANBERRY	SHRUB	0	FAC	CAPRIFOLIACEAE

Common Name
BLACK HAW
DOWNY ARROWWOOD
SMOOTH ARROWWOOD
RUSTY NANNYBERRY
AMERICAN VETCH
WOOD VETCH
COW VETCH
WOOLLY-POD VETCH
COMMON VETCH
NARROW-LEAVED VETCH
FOUR-SEEDED VETCH
WINTER VETCH
COW PEA
LARGE PERIWINKLE
COMMON PERIWINKLE
WOODLAND BLUE VIOLET
WILD PANSY
CANADA VIOLET
DOG VIOLET
SAND VIOLET
HAIRY WHITE VIOLET
LANCE-LEAVED VIOLET
NARROW-LEAVED VIOLET
SMOOTH WHITE VIOLET
MISSOURI VIOLET
NORTHERN BLUE VIOLET
MARSH BLUE VIOLET
ENGLISH VIOLET
BIRD'S FOOT VIOLET
PRAIRIE VIOLET
COMMON BLUE VIOLET
CONFEDERATE VIOLET
PRIMROSE-LEAVED VIOLET
DOWNY YELLOW VIOLET
SMOOTH YELLOW VIOLET
WILD PANSY
ARROW-LEAVED VIOLET
NORTHERN BLUE VIOLET
WOOLLY BLUE VIOLET
COMMON WHITE VIOLET
JOHNNY-JUMP-UP
CLEFT VIOLET
PLAINS VIOLET
CO

Common Name	Physiognomy	W	Wet	Family
PANSY	A-FORB	5	UPL	VIolaceat
SUMMER GRAPE	W-VINE	3	FACU	VITACEAE
WINTER GRAPE	W-VINE	-2	FACW-	VITACEAE
FOX GRAPE	W-VINE	3	FACU	VITACEAE
CATBIRD GRAPE	W-VINE	-5	OBL	VITACEAE
RIVERVBANK GRAPE	W-VINE	-2	FACW.	VITACEAE
SAND GRAPE	W-VINE	4	FACU-	VITACEAE
FROST GRAPE	W-VINE	-2	FACW-	VITACEAE
BROME FESCUE	A GRASS	5	UPL	POACEAE
MOUSETAIL. FESCUE	A-GRASS	5	UPL	POACEAE
SIX WEEKS FESCUE	A-GRASS	-2	FACW-	POACEAE
BARREN STRAWBERRY	P-FORB	5	UPL	ROSACEAE
WISTERIA	W-VINE	5	UPL	FABACEAE
KENTUCKY WISTERIA	A-FORB	5	UPL	FABACEAE
NIPPLED WATER MEAL	W-VINE	-5	OBL	LEMNACEAE
WATER MEAL	A-FORB	-5	OBL	LEMNACEAE
SPOTTED WATER MEAL	A-FORB	-5	OBL	LEMNACEAE
BLADE DUCKWEED	A-FORB	-5	OBL	LEMNACEAE
RUSTY WOODSIA	FERN	5	UPL	ASPLENIACEAE
COMMON WOODSIA	FERN	5	UPL	ASPLENIACEAE
NETTED CHAIN FERN	FERN	-5	OBL	ASPLENIACEAE
VIRGINIA CHAIN FERN	FERN	-5	OBL	ASPLENIACEAE
SPINY COCKELBUR	A-FORB	3	FACU	ASTERACEAE
COCKLEBUR	A-FORB	0	FAC	ASTERACEAE
YELLOW-EYED GRASS	P-FORB	-5	OBL	XYRIDACEAE
TWISTED YELLOW-EYED GRASS	P-FORB	-5	OBL	XYRIDACEAE
ADAM'S NEEDLE	P-FORB	5	UPL	LILIACEAE
HORNED PONDWEED	P-FORB	-5	OBL	ZANNICHELLIACEAE
PRICKLY ASH	SHRUB	5	UPL	RUTACEAE
CORN	A-GRASS	5	UPL	POACEAE
WHITE CAMASS	A-FORB	5	UPL	LILIACEAE
WILD RICE	A-GRASS	-5	OBL	POACEAE
SOUTHERN WILD RICE	P-GRASS	-5	OBL	POACEAE
HEART-LEAVED MEADOW PARSNIP	P-FORB	3	FACU	APIACEAE
GOLDEN ALEXANDERS	P-FORB	-1	FAC +	APIACEAE
WATER STAR GRASS	P-FORB	-5	OBL	PONTEDERIACEAE
JAPANESE LAWN GRASS	P-GRASS	5	UPL	POACEAE

CC Scientific Name
VIOWIT - VIOLA \times WITTROCKIANA Vitis aestivalis Vitis cinerea VITIS LABRUSCA
Vitis palmata Vitis riparia Vitis rupestris Vitis vulpina Vitis vulpina mousetail fescue SIX WEEKS FESCUE barren sta Nipat mat WATER MEAL
SPOTTED WATER MEAL A.FORB FERN A-FORB P-FORB P-FORB SHRUB A.GRASS

P-GRASS

Erigenia is a peer-reviewed journal published by the Illinois Native Plant Society. The journal publishes research papers, reviews, essays, and technical reports pertaining to the biota of Illinois and adjacent states.

SUBMISSION OF MANUSCRIPTS

All manuscripts and communications should be sent to the editor, Gerould S. Wilhelm, Conservation Research Institute, 324 N. York Road, Elmhurst, IL 60126. Three copies of the manuscript should be submitted. Authors should retain a copy of all material. The title page should state the affiliation and the complete addresses of all the authors; telephone and fax numbers for the corresponding author should also be supplied. Text format must be in a single font, double-spaced and left-justified. All papers will be copy-edited. Instructions for preparation of the manuscript and the computer disk will be provided upon acceptance.

ABSTRACTS

Research and technical papers should include a oneparagraph abstract of not more than 250 words. The abstract should state concisely the goals, principal results, and major conclusions of the paper.

TAXONOMIC NAMES

Either a standard taxonomic manual should be cited whose names are followed consistently, or the scientific names should be followed by their authority. Common names, if used, should be referenced to a scientific name. Thereafter, scientific names are recommended, but either may be used if done so consistently.

TABLES AND ILLUSTRATIONS

All illustrations, photographs, and special lettering should be capable of 50 to 66 percent reduction without loss of clarity or legibility. Originals should be sent only upon acceptance of the manuscript.
Tables must be typed double-spaced and without vertical rules. All tables should have complete but brief headings and should be numbered consecutively within the text. Table legends should be typed doublespaced on a separate sheet.
Photographic prints are requested for illustration. They should be sharp, glossy, black-and-white photographs no larger than 8.5×11 inches.
Originals of drawings should be supplied for reproduction. The author's name, the figure number,
and an indication of the top of the figure should be lightly penciled on the back of every figure. Figure legends should be typed double-spaced on a separate sheet.

Headings

Headings and literature citations in the text and in the Literature Cited section should be in the format outlined below:

MAIN HEADING

Subheading on Own Line

Sub-subheading at beginning of line. The text continues
Sub-sub-subheading indented and at beginning of line. The text continues...

Literature Citations

In Text:

Braun (1950) or Parks et al. (1968) or (Mohlenbrock 1970, 1990) or (Swink and Wilhelm 1994; Young 1994).
In Literature Cited:
Braun, E. L. 1950. Deciduous forests of eastern North America. Blakiston, Philadelphia.
Mohlenbrock, R. H. 1990. Forest trees of Illinois. 6th ed. Illinois Department of Conservation, Springfield.
Parks, W. D., J. B. Fehrenbacher, C. C. Miles, J. M. Paden and J. Weiss. 1968. Soil survey of Pulaski and Alexander counties, Illinois. U.S.D.A. Soil Report 85.
Greenberg, R. 1992. Forest migrants in nonforest habitats on the Yucatan Peninsula. Pages 273-286 in J. M. Hagan III and D. W. Johnson, eds. Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, D.C.

PROOFS

Authors will have the opportunity to review their articles before publication and are expected to correct any errors. The proofs should be returned within one week of receipt. An order form for reprints will accompany the sign-off form. The author who receives it is responsible for ensuring that orders are also placed for any co-authors.

Page Charges

Page charges of $\$ 15$ for members and $\$ 25$ for nonmembers will be assessed. The fee will be waived for those who sign a statement to the effect that they neither have institutional support for publication nor can afford the page charges.

Illinois Native Plant Society

ADDRESS CORRECTION REQUESTED

INS 1997 SO
UNIVERSITY OF ILLINOIS LIB-E
1408 W GREGORY DP.
SERIALS DEPT
URBANA IL 61801-3607

ERIGENIA 15 NOVEMBER 1997

[^0]: ${ }^{1}$ Illinors Natural History Survey, 607 E. Peabody Drive, Champaign, IL 61820
 ${ }^{2}$ Conservation Research Instutute, 324 N. York Road, Elmhurst, IL 60126
 ${ }^{3}$ The Nature Conservancy, 2800 S. Brentwood, St. Louis, MO 63144

