Skip to main content

Advertisement

Log in

Combating influenza: natural products as neuraminidase inhibitors

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The ever increasing threat of influenza pandemic outbreaks represents a serious concern for public health. Various therapeutic and prophylactic means are available which helps to counter viral infections including vaccines and curative such as zanamivir and oseltamivir. However, with the inception of unfamiliar strains which show resistance to the available drugs manifests the rapid demand for discovery of rational drug as antiviral agents. Neuraminidase, a crucial enzyme for viral replication is the most promising target for new drugs because of its highly conserved residues. Nature provides with a myriad of natural bioactive compounds constituting a plethora of chemical entities that can be useful in drug discovery against influenza. This review is an update on neuraminidase enzyme highlighting its structure, function, catalytic mechanism and its inhibition by natural products. Various approved neuraminidase inhibitors and neuraminidase inhibition assays along with their susceptibility have been described. A discussion on published reports about 267 plant secondary metabolites tested in the past 7 years (2011–2017) for their neuraminidase inhibition activity is presented. Moreover, the recent techniques using QSAR to develop third generation neuraminidase inhibitors have been described. This work summarizes the recent development in experimental and theoretical research based on neuraminidase inhibitors that will help in the discovery of antiviral agents in coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CL:

Chemiluminescence

FL:

Fluorescence

HA:

Haemagglutinin

NA:

Neuraminidase

NAI:

Neuraminidase inhibitor

DANA:

2-Deoxy-2,3-didehydro-N-acetylneuraminic acid

4-MU:

4-Methylumbelliferone

MUNANA:

4-Methylumbelliferyl-N-acetyl-a-d-neuraminic acid

References

  • AbdelGhafar AN, Chotpitayasunondh T, Gao Z, Hayden FG, Hien ND, De Jong MD, Naghdaliyev A, Peiris JSM, Shindo N, Soeroso S (2008) Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358:261–273

    Article  CAS  Google Scholar 

  • Abdel-Mageed WM, Bayoumi SAH, Chen C, Vavricka CJ, Li L, Malik A, Dai H, Song F, Wang L, Zhang J (2014) Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity. Bioorg Med Chem 22(7):2236–2243

    Article  CAS  PubMed  Google Scholar 

  • Aminoff D (1961) Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J 81(2):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Elliott AJ, Parker CD (2000) BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 43(19):3482–3486

    Article  CAS  PubMed  Google Scholar 

  • Bang S, Ha TKQ, Lee C, Li W, Oh WK, Shim SH (2016) Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br J Ethnopharmacol 192:398–405

    Article  CAS  PubMed  Google Scholar 

  • Barnett JM, Cadman A, Gor D, Dempsey M, Walters M, Candlin A, Tisdale M, Morley PJ, Owens IJ, Fenton RJ (2000) Zanamivir susceptibility monitoring and characterization of influenza virus clinical isolates obtained during phase II clinical efficacy studies. Antimicrob Agents Chemother 44(1):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer K, Schrader C, Suess J, Wutzler P, Schmidtke M (2007) Neuraminidase inhibitor susceptibility of porcine H3N2 influenza A viruses isolated in Germany between 1982 and 1999. Antiviral Res 75(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Bauer K, Dürrwald R, Schlegel M, Pfarr K, Topf D, Wiesener N, Dahse HM, Wutzler P, Schmidtke M (2012) Neuraminidase inhibitor susceptibility of swine influenza A viruses isolated in Germany between 1981 and 2008. Med Microbiol Immunol 201(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • BioCryst Pharmaceuticals (2014) Rapivab (peramivir) Prescribing Information. http://wwwaccessdata.fda.gov/drugsatfda_docs/label/2014/206426lbl.pdf. Cited 3 July 2017

  • Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM (1993) Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2, 3-dehydro-N-acetyl neuraminic acid. J Mol Biol 232(4):1069–1083

    Article  CAS  PubMed  Google Scholar 

  • Burmeister WP, Ruigrok RW, Cusack S (1992) The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J 11(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmeister WP, Henrissat B, Bosso C, Cusack S, Ruigrok RWH (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Buxton RC, Edwards B, Juo RR, Voyta JC, Tisdale M, Bethell RC (2000) Development of a sensitive chemiluminescent neuraminidase assay for the determination of influenza virus susceptibility to zanamivir. Anal Biochem 280(2):291–300

    Article  CAS  PubMed  Google Scholar 

  • Centre for disease control and prevention (2017). Influenza Type A Viruses: Avian Influenza (Flu). https://www.cdc.gov/flu/avianflu/influenza-a-virus-subtypes.htm. Cited 22 May 2017

  • Chamni S, De-Eknamkul W (2013) Recent progress and challenges in the discovery of new neuraminidase inhibitors. Expert Opin Ther Pat 23(4):409–423

    Article  CAS  PubMed  Google Scholar 

  • Chand P, Kotian PL, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Babu YS, Bantia S, Elliott AJ, Montgomery JA (2001) Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J Med Chem 44(25):4379–4392

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Duan R, Wei Y, Zou J, Li J, Liu X, Wang H, Guo Y, Li Q, Dai J (2015) Flavonol dimers from callus cultures of Dysosma versipellis and their in vitro neuraminidase inhibitory activities. Fitoterapia 107:77–84

    Article  CAS  PubMed  Google Scholar 

  • Chen BL, Wang YJ, Guo H, Zeng GY (2016) Design, synthesis, and biological evaluation of crenatoside analogues as novel influenza neuraminidase inhibitors. Eur J Med Chem 109:199–205

    Article  CAS  PubMed  Google Scholar 

  • Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51(13):3878–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong AKJ, Pegg MS, And Taylor NR, Itzstein M (1992) Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus. FEBS J 207(1):335–343

    CAS  Google Scholar 

  • Clinical Trials (2017) A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/show/NCT01231620. Cited 12 April 2017

  • Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453(7199):1258

    Article  CAS  PubMed  Google Scholar 

  • Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303(5912):41–44

    Article  CAS  PubMed  Google Scholar 

  • Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, Air GM, Webster RG (1989) Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci 323:511–518

    Article  CAS  PubMed  Google Scholar 

  • Cox NJ, Subbarao K (2000) Global epidemiology of influenza: past and present. Annu Rev Med 51(1):407–421

    Article  CAS  PubMed  Google Scholar 

  • Cox NJ, Fuller F, Kaverin N, Klenk HD, Lamb RA, Mahy BWJ, McCauley J, Nakamura K, Palese P, Webster RG (2000) Virus taxonomy: 7th report of the International Committee on Taxonomy of Viruses

  • Dao TT, Nguyen PH, Lee HS, Kim E, Park J, Il Lim S, Oh WK (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 21(1):294–298

    Article  CAS  PubMed  Google Scholar 

  • Dao TT, Dang TT, Nguyen PH, Kim E, Thuong PT, Oh WK (2012a) Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg Med Chem Lett 22(11):3688–3692

    Article  CAS  PubMed  Google Scholar 

  • Dao TT, Nguyen PH, Won HK, Kim EH, Park J, Won BY, Oh WK (2012b) Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem 134(1):21–28

    Article  CAS  Google Scholar 

  • Das K, Aramini JM, Ma LC, Krug RM, Arnold E (2010) Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17(5):530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Adak AK, Ponnapalli K, Lin CH, Hsu KC, Yang J-M, Hsu TA, Lin CC (2016) Design and synthesis of 1, 2, 3-triazole-containing N-acyl zanamivir analogs as potent neuraminidase inhibitors. Eur J Med Chem 123:397–406

    Article  CAS  PubMed  Google Scholar 

  • Eshaghi A, Patel SN, Sarabia A, Higgins RR, Savchenko A, Stojios PJ, Li Y, Bastien N, Alexander DC, Low DE (2011) Multidrug-resistant pandemic (H1N1) 2009 infection in immunocompetent child. Emerg Infect Dis 17(8):1472

    PubMed  PubMed Central  Google Scholar 

  • Food and drug administration (2017a) Antiviral drug information. https://www.fda.gov/drugs/drugsafety/informationbydrugclass/ucm100228.htm. Cited 12 April 2017

  • Food and drug administration (2017b) Antiviral drug information. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm514854.htm. Cited 3 July 2017

  • Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V (2009) Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science 325(5937):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genentech USA (2012) I. Tamiflu® (oseltamivir phosphate) Prescribing Information. Genentech. https://www.gene.com/download/pdf/tamiflu_prescribing.pdf. Cited 12 April 2017

  • GlaxosmithKline (2017) Relenza (Zanamivir for Inhalation) prescribing Information. https://www.2013us.gsk.com/products/assets/us_relenza.pdf. Cited 12 April 2017

  • Gong J, Xu W, Zhang J (2007) Structure and functions of influenza virus neuraminidase. Curr Med Chem 14(1):113–122

    Article  CAS  PubMed  Google Scholar 

  • Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  CAS  PubMed  Google Scholar 

  • Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Dürrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM (2009) Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J Med Chem 53(2):778–786

    Article  CAS  Google Scholar 

  • Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM (2012) Influenza neuraminidase: a druggable target for natural products. Nat Prod Res 29(1):11–36

    CAS  Google Scholar 

  • Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, Nietzsche S, Schmidtke MRJ (2016) Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  • Gubareva LV (2004) Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res 103(1):199–203

    Article  CAS  PubMed  Google Scholar 

  • Gubareva LV, Matrosovich MN, Brenner MK, Bethell RC, Webster RG (1998) Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J Infect Dis 178(5):1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Ha SY, Youn H, Song CS, Kang SC, Bae JJ, Kim HT, Lee KM, Eom TH, Kim IS, Kwak JH (2014) Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J Microbiol 52(4):340–344

    Article  CAS  PubMed  Google Scholar 

  • Ha TKQ, Dao TT, Nguyen NH, Kim J, Kim E, Cho TO, Oh WK (2016) Antiviral phenolics from the leaves of Cleistocalyx operculatus. Fitoterapia 110:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hause BM, Collin EA, Liu R, Huang B, Sheng Z, Lu W, Wang D, Nelson EA, Li F (2014) Characterization of a novel influenza virus in cattle and swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5(2):e00031-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata A, Kim SY, Kobayakawa N, Tanaka N, Kashiwada Y, Miltiorins AD (2015) Diterpenes from Radix Salviae miltiorrhizae. Fitoterapia 102:49–55

    Article  CAS  PubMed  Google Scholar 

  • Hour MJ, Huang SH, Chang CY, Lin YK, Wang CY, Chang YS and Lin CW (2013) Baicalein, ethyl acetate, and chloroform extracts of Scutellaria baicalensis inhibit the neuraminidase activity of pandemic 2009 H1N1 and seasonal influenza A viruses. Evidence-based Complement. Altern Med 2013

  • Hurt AC, Barr IG, Hartel G, Hampson AW (2004) Susceptibility of human influenza viruses from Australasia and South East Asia to the neuraminidase inhibitors zanamivir and oseltamivir. Antiviral Res 62(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Ikram NKK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, Rahim ASA, Lam CK, Normi YM, Rahman NA (2015) A virtual screening approach for identifying plants with anti H5N1 neuraminidase activity. J Chem Inf Model 55(2):308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HJ, Kim YM, Kim JH, Kim JY, Park JY, Park SJ, Ryu YB, Lee WS (2012) Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol Pharm Bull 35(5):786–790

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Liu C, Wang H, Li B, Li C, Chen R, Liu A (2014) Studies on the bioactive flavonoids isolated from pithecellobium clypearia benth. Molecules 19(4):4479–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthick V, Ramanathan K, Shanthi V, Rajasekaran R (2013) Identification of potential inhibitors of H5N1 influenza A virus neuraminidase by ligand-based virtual screening approach. Cell Biochem Biophys 66(3):657–669

    Article  CAS  PubMed  Google Scholar 

  • Kashiwada Y, Omichi Y, Kurimoto SI, Shibata H, Miyake Y, Kirimoto T, Takaishi Y (2013) Conjugates of a secoiridoid glucoside with a phenolic glucoside from the flower buds of Lonicera japonica Thunb. Phytochemistry 96:423–429

    Article  CAS  PubMed  Google Scholar 

  • Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119(4):681–690

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Ryu YB, Curtis-Long MJ, Yuk HJ, Cho JK, Kim JY, Kim KD, Lee WS, Park KH (2011) Flavanones and rotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food Chem Toxicol 49(8):1849–1856

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Ryu YB, Lee WS, Kim YH (2014) Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome. Bioorg Med Chem 22(21):6047–6052

    Article  CAS  PubMed  Google Scholar 

  • King SJ, Hippe KR, Weiser JN (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59(3):961–974

    Article  CAS  PubMed  Google Scholar 

  • Kirchmair J, Distinto S, Roman Liedl K, Markt P, Maria Rollinger J, Schuster D, Maria Spitzer G, Wolber G (2011a) Development of anti-viral agents using molecular modeling and virtual screening techniques. Infect Disord Targets 11(1):64–93

    Article  CAS  Google Scholar 

  • Kirchmair J, Rollinger JM, Liedl KR, Seidel N, Krumbholz A, Schmidtke M (2011b) Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode. Future Med Chem 3(4):437–450

    Article  CAS  PubMed  Google Scholar 

  • Kobasa D, Kodihalli S, Luo M, Castrucci MR, Donatelli I, Suzuki Y, Suzuki T, Kawaoka Y (1999) Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. J Virol 73(8):6743–6751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kongkamnerd J, Milani A, Cattoli G, Terregino C, Capua I, Beneduce L, Gallotta A, Pengo P, Fassina G, Monthakantirat O, Umehara K, De-Eknamkul W, Miertus S (2011) The quenching effect of flavonoids on 4-methylumbelliferone, a potential pitfall in fluorimetric neuraminidase inhibition assays. J Biomol Screen 16(7):755–764

    Article  CAS  PubMed  Google Scholar 

  • Kongkamnerd J, Cappelletti L, Prandi A, Seneci P, Rungrotmongkol T, Jongaroonngamsang N, Rojsitthisak P, Frecer V, Milani A, Cattoli G, Terregino C, Capua I, Beneduce L, Gallotta A, Pengo P, Fassina G, Miertus S, De-Eknamkul W (2012a) Synthesis and in vitro study of novel neuraminidase inhibitors against avian influenza virus. Bioorg Med Chem 20(6):2152–2157

    Article  CAS  PubMed  Google Scholar 

  • Kongkamnerd J, Milani A, Cattoli G, Terregino C, Capua I, Beneduce L, Gallotta A, Pengo P, Fassina G, Miertus S, De-Eknamkul W (2012b) A screening assay for neuraminidase inhibitors using neuraminidases N1 and N3 from a baculovirus expression system. J Enzyme Inhib Med Chem 27(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Lee IK, Hwang BS, Kim DW, Kim JY, Woo EE, Lee YJ, Choi HJ, Yun BS (2016) Characterization of Neuraminidase Inhibitors in Korean Papaver rhoeas Bee Pollen Contributing to Anti-Influenza Activities in vitro. Planta Med 82(6):524–529

    Article  CAS  PubMed  Google Scholar 

  • Li W, Escarpe PA, Eisenberg EJ, Cundy KC, Sweet C, Jakeman KJ, Merson J, Lew W, Williams M, Zhang L (1998) Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother 42(3):647–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Sun X, Li Z, Liu Y, Vavricka CJ, Qi J, Gao GF (2012) Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proc Nat Acad Sci 109(46):18897–18902

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang X, Huang L (2016) Anti-Influenza virus activity and constituents characterization of Paeonia delavayi extracts. Molecules 21(9):1133

    Article  CAS  PubMed Central  Google Scholar 

  • Li Z, Meng Y, Xu S, Shen W, Meng Z, Wang Z, Ding G, Huang W, Xiao W, Xu J (2017) Discovery of acylguanidine oseltamivir carboxylate derivatives as potent neuraminidase inhibitors. Bioorg Med Chem 25(10):2772–2781

    Article  CAS  PubMed  Google Scholar 

  • Lian W, Fang J, Li C, Pang X, Liu AL, Du G-H (2016) Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models. Mol Divers 20(2):439–451

    Article  CAS  PubMed  Google Scholar 

  • Liu AL, Wang HD, Lee SM, Wang YT, Du GH (2008) Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem 16(15):7141–7147

    Article  CAS  PubMed  Google Scholar 

  • Liu A-L, Shu SH, Qin H-L, Lee SMY, Wang YT, Du GH (2009) In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta Med 75(4):337–339

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Cao W, Deng C, Wu Z, Zeng G, Zhou Y (2016) Polyphenolic glycosides isolated from Pogostemon cablin (Blanco) Benth. as novel influenza neuraminidase inhibitors. Chem Cent J 10(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaisree M, Rungrotmongkol T, Decha P, Intharathep P, Aruksakunwong O, Hannongbua S (2008) Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins Struct Funct Bioinforma 71(4):1908–1918

    Article  CAS  Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78(22):12665–12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKimm-Breschkin JL (2013) Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respi. Viruses 7(s1):25–36

    CAS  Google Scholar 

  • Meijer A, Lackenby A, Hungnes O, Lina B, Van Der Werf S, Schweiger B, Opp M, Paget J, van de Kassteele J, Hay A (2009) Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007–08 season. Emerg Infect Dis 15(4):552

    Article  PubMed  PubMed Central  Google Scholar 

  • Meindl P, Bodo G, Lindner J, Palese P (1971) Einfluß von 2-desoxy-2.3-dehydro-N-acetylneuraminsäure auf myxovirus-neuraminidasen und die replikation von influenza-und newcastle disease virus/influence of 2-deoxy-2, 3-dehydro-N-acetylneuraminic acid on myxovirus-neuraminidases and the replication of influenza-and newcastle disease virus. Zeitschrift für Naturforsch. B 26(8):792–797

    Article  CAS  Google Scholar 

  • Meindl P, Bodo G, Palese P, Schulman J, Tuppy H (1974) Inhibition of neuraminidase activity by derivatives of 2-deoxy-2, 3-dehydro-N-acetylneuraminic acid. Virology 58(2):457–463

    Article  CAS  PubMed  Google Scholar 

  • Möller B, Herrmann K (1983) Quinic acid esters of hydroxycinnamic acids in stone and pome fruit. Phytochemistry 22(2):477–481

    Article  Google Scholar 

  • Monto AS, Gravenstein S, Elliott M, Colopy M, Schweinle J (2000) Clinical signs and symptoms predicting influenza infection. Arch Intern Med 160(21):3243–3247

    Article  CAS  PubMed  Google Scholar 

  • Naumov P, Yasuda N, Rabeh WM, Bernstein J (2013) The elusive crystal structure of the neuraminidase inhibitor Tamiflu (oseltamivir phosphate): molecular details of action. Chem Commun 49(19):1948–1950

    Article  CAS  Google Scholar 

  • NCBI (2017) FLU Database. https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database. Cited 22 may 2017

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Fry AM, Loveless PA, Klimov AI, Gubareva LV (2010a) Recovery of a multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a dual H275Y/I223R mutation from a child after prolonged treatment with oseltamivir. Clin Infect Dis 51(8):983–984

    Article  PubMed  Google Scholar 

  • Nguyen HT, Sheu TG, Mishin VP, Klimov AI, Gubareva LV (2010b) Assessment of pandemic and seasonal influenza A (H1N1) virus susceptibility to neuraminidase inhibitors in three enzyme activity inhibition assays. Antimicrob Agents Chemother 54(9):3671–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen PH, Na M, Dao TT, Ndinteh DT, Mbafor JT, Park J, Cheong H, Oh WK (2010c) New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae. Bioorg Med Chem Lett 20(22):6430–6434

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TNA, Dao TT, Tung BT, Choi H, Kim E, Park J, Lim SIL, Oh WK (2011) Influenza A (H1N1) neuraminidase inhibitors from Vitis amurensis. Food Chem 124(2):437–443

    Article  CAS  Google Scholar 

  • Nguyen NH, Ha TKQ, Choi S, Eum S, Lee CH, Bach TT, Chinh VT, Oh WK (2016) Chemical constituents from Melicope pteleifolia leaves. Phytochemistry 130:291–300

    Article  CAS  PubMed  Google Scholar 

  • Nicholls H (2006) Pandemic influenza: the inside story. PLoS Biol 4(2):e50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palese P, Compans RW (1976) Inhibition of influenza virus replication in tissue culture by 2-deoxy-2, 3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol 33(1):159–163

    Article  CAS  PubMed  Google Scholar 

  • Palese P, Schulman JL, Bodo G, Meindl P (1974) Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2, 3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 59(2):490–498

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Jeong HJ, Kim YM, Park SJ, Rho MC, Park KH, Ryu YB, Lee WS (2011) Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg Med Chem Lett 21(18):5602–5604

    Article  CAS  PubMed  Google Scholar 

  • Potier M, Mameli L, Belisle M, Dallaire L, Melancon SB (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-DN-acetylneuraminate) substrate. Anal Biochem 94(2):287–296

    Article  CAS  PubMed  Google Scholar 

  • Ra J, Seo KH, Ko JY, Lee M, Kang HJ, Kim SL (2015) Antioxidative effect and neuraminidase inhibitory activity of polyphenols isolated from a new Korean red waxy sorghum (Sorghum bicolor L. cv. Hwanggeumchalsusu). J Life Sci 25(7):786–794

    Article  Google Scholar 

  • Rajasekaran D, Palombo EA, Yeo TC, Ley DLS, Tu CL, Malherbe F, Grollo L (2013) Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS One 8(11):e79293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungrotmongkol T, Frecer V, De-Eknamkul W, Hannongbua S, Miertus S (2009) Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiviral Res 82(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45

    Article  CAS  PubMed  Google Scholar 

  • Ryu YB, Kim JH, Park SJ, Chang JS, Rho MC, Bae KH, Park KH, Lee WS (2010) Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg Med Chem Lett 20(3):971–974

    Article  CAS  PubMed  Google Scholar 

  • Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98(2):174–185

    Article  CAS  PubMed  Google Scholar 

  • Santos-Buelga C, González-Paramás AM (2016) Flavonoids: functions, metabolism and biotechnology. In: Vandamme EJ, Revuelta JS (eds) Industrial Biotechnology of Vitamins, Biopigments, and antioxidants. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 469–495

    Chapter  Google Scholar 

  • Schulman JL, Palese P (1975) Susceptibility of different strains of influenza a virus to the inhibitory effects of 2-deoxy-2, 3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 63(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, Butler EN, Wallis TR, Klimov AI, Gubareva LV (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52(9):3284–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtyrya YA, Mochalova LV and Bovin NV (2009) Influenza virus neuraminidase: structure and function. Acta Naturae 1(2 (2))

  • Swaminathan K, Dyason JC, Maggioni A, Von Itzstein M, Downard KM (2013) Binding of a natural anthocyanin inhibitor to influenza neuraminidase by mass spectrometry. Anal Bioanal Chem 405(20):6563–6572

    Article  CAS  PubMed  Google Scholar 

  • Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T, Shimazu Y, Shimomura T, Watanabe S, Odagiri T (2016) Influenza A (H1N1) pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and peramivir due to a dual H275Y/G147R substitution, Japan, March 2016. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES.2016.21.24.30258

    Article  PubMed  Google Scholar 

  • Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Rev Biomed 17:69–79

    Article  Google Scholar 

  • Taylor NR, von Itzstein M (1994) Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem 37(5):616–624

    Article  CAS  PubMed  Google Scholar 

  • Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treanor JJ (2005) Influenza virus. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, vol 2. Elsevier, Philadelphia, pp 2060–2085

    Google Scholar 

  • Uddin Z, Song YH, Curtis-Long MJ, Kim JY, Yuk HJ, Park KH (2016) Potent bacterial neuraminidase inhibitors, anthraquinone glucosides from Polygonum cuspidatum and their inhibitory mechanism. J Ethnopharmacol 193:283–292

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Chompoo J, Kishimoto W, Makise T, Tawata S (2011) HIV-1 integrase and neuraminidase inhibitors from Alpinia zerumbet. J Agric Food Chem 59(7):2857–2862

    Article  CAS  PubMed  Google Scholar 

  • van der Vries E, Stelma FF, Boucher CAB (2010) Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363(14):1381–1382

    Article  PubMed  Google Scholar 

  • Varghese JN, Colman PM (1991) Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2· 2 Å resolution. J Microbiol 221(2):473–486

    CAS  Google Scholar 

  • Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303(5912):35–40

    Article  CAS  PubMed  Google Scholar 

  • Varghese JN, Colman PM, Van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL (1997) Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Nat Acad Sci 94(22):11808–11812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese JN, Smith PW, Sollis SL, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL, Colman PM (1998) Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 6(6):735–746

    Article  CAS  PubMed  Google Scholar 

  • Vavricka CJ, Li Q, Wu Y, Qi J, Wang M, Liu Y, Gao F, Liu J, Feng E, He J, Wang J (2011a) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog 7(10):e1002249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavricka CJ, Liu Y, Li Q, Shi Y, Wu Y, Sun Y, Qi J, Gao GF (2011b) Special features of the 2009 pandemic swine-origin influenza A H1N1 hemagglutinin and neuraminidase. Chinese Sci Bull 56(17):1747–1752

    Article  CAS  Google Scholar 

  • Vavricka CJ, Liu Y, Kiyota H, Sriwilaijaroen N, Qi J, Tanaka K, Wu Y, Li Q, Li Y, Yan J (2013) Influenza neuraminidase operates via a nucleophilic mechanism and can be targeted by covalent inhibitors. Nat Commun 4:1491

    Article  CAS  PubMed  Google Scholar 

  • Virus NS-OIAH, Team I (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009(360):2605–2615

    Google Scholar 

  • von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428):418–423

    Article  Google Scholar 

  • von Itzstein M, Dyason JC, Oliver SW, White HF, Wu W-Y, Kok GB, Pegg MS (1996) A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J Med Chem 39(2):388–391

    Article  Google Scholar 

  • Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD (2000) Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74(14):6316–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther E, Richter M, Xu Z, Kramer C, Von Grafenstein S, Kirchmair J, Grienke U, Rollinger JM, Liedl KR, Slevogt H (2015) Antipneumococcal activity of neuraminidase inhibiting artocarpin. Int J Med Microbiol 305(3):289–297

    Article  CAS  PubMed  Google Scholar 

  • Wang MZ, Tai CY, Mendel DB (2002) Mechanism by which mutations at His274 alter sensitivity of influenza A virus N1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob Agents Chemother 46(12):3809–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Curtis-Long MJ, Yuk HJ, Kim DW, Tan XF, Park KH (2013) Bacterial neuraminidase inhibitory effects of prenylated isoflavones from roots of Flemingia philippinensis. Bioorg Med Chem 21(21):6398–6404

    Article  CAS  PubMed  Google Scholar 

  • Wang PC, Fang JM, Tsai KC, Wang SY, Huang WI, Tseng YC, Cheng YSE, Cheng TJR, Wong CH (2016) Peramivir phosphonate derivatives as influenza neuraminidase inhibitors. J Med Chem 59(11):5297–5310

    Article  CAS  PubMed  Google Scholar 

  • Wei JH, Zheng YF, Li CY, Tang YP, Peng GP (2014) Bioactive constituents of oleanane-type triterpene saponins from the roots of Glycyrrhiza glabra. J Asian Nat Prod Res 16(11):1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Woods JM, Bethell RC, Coates JA, Healy N, Hiscox SA, Pearson BA, Ryan DM, Ticehurst J, Tilling J, Walcott SM (1993) 4-Guanidino-2, 4-dideoxy-2, 3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother 37(7):1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World health organization (2017) Influenza. http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_06_15_2017.pdf?ua=1. Cited 22 May 2017

  • Wu J, Chen G, Xu X, Huo X, Wu S, Wu Z, Gao H (2014) Seven new cassane furanoditerpenes from the seeds of Caesalpinia minax. Fitoterapia 92:168–176

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Tomozawa T, Kakuta M, Tokumitsu A, Nasu H, Kubo S (2009) CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob Agents Chemother 53(1):186–192

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhao D, Yuan K, Zhou G, Wang Y, Xiao Y, Wang C, Xu J, Yang W (2015) Two new dimeric naphthoquinones with neuraminidase inhibitory activity from Lithospermum erythrorhizon. Nat Prod Res 29(10):908–913

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Liu AL, Liu SJ, Xu XW, Huang LF (2016a) Screening for neuraminidase inhibitory activity in traditional Chinese medicines used to treat influenza. Molecules 21(9):1–8

    Google Scholar 

  • Yang ZL, Zeng XF, Liu HP, Yu Q, Meng X, Yan ZL, Fan ZC, Xiao HX, Iyer SS, Yang Y (2016b) Synthesis of multivalent difluorinated zanamivir analogs as potent antiviral inhibitors. Tetrahedron Lett 57(24):2579–2582

    Article  CAS  Google Scholar 

  • Yang Y, Cheng H, Yan H, Wang PZ, Rong R, Zhang YY, Zhang CB, Du RK, Rong LJ (2017) A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J Med Virol 89(5):908–916

    Article  CAS  PubMed  Google Scholar 

  • Yen HL, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, Webster RG, Govorkova EA (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother 49(10):4075–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuk HJ, Ryu HW, Jeong SH, Curtis-Long MJ, Kim HJ, Wang Y, Song YH, Park KH (2013) Profiling of neuraminidase inhibitory polyphenols from the seeds of Paeonia lactiflora. Food Chem Toxicol 55:144–149

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yang J, Liang K, Feng L, Li S, Wan J, Xu X, Yang G, Liu D, Yang S (2008) Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling. J Chem Inf Model 48(9):1802–1812

    Article  CAS  PubMed  Google Scholar 

  • Zürcher T, Yates PJ, Daly J, Sahasrabudhe A, Walters M, Dash L, Tisdale M, McKimm-Breschkin JL (2006) Mutations conferring zanamivir resistance in human influenza virus N2 neuraminidases compromise virus fitness and are not stably maintained in vitro. J Antimicrob Chemother 58(4):723–732

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Anjum, N. & Chandra, R. Combating influenza: natural products as neuraminidase inhibitors. Phytochem Rev 18, 69–107 (2019). https://doi.org/10.1007/s11101-018-9581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9581-1

Keywords

Navigation