Skip to main content
Log in

Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Kumar et al., created with BioRender.com. Abbreviations: D-flow, disturbed flow; EC, endothelial cell; LDL, low-density lipoprotein; oxLDL, oxidized LDL; S-flow, stable flow; VSMC, vascular smooth muscle cell

Fig. 2
Fig. 3

Modified from Cheng et al., 2017, created with BioRender.com Abbreviations: D-flow, disturbed flow; EC, endothelial cell; ECM, extracellular matrix; MWSS, mean wall shear stress

Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

S-flow:

Stable flow

D-flow:

Disturbed flow

EC:

Endothelial cells

LAM:

Leukocyte adhesion molecule

VCAM1:

Vascular adhesion molecule 1

MMP:

Metalloproteinases

BMP4:

Bone morphogenic protein

miR:

Micro RNAs

EndMT:

Endothelial to mesenchymal transition

EndICLT:

Endothelial to immune cell-like transition

ECM:

Extracellular matrix

NO:

Nitic oxide

ROS:

Reactive oxygen species

SMA:

Smooth muscle actin

scATACseq:

Single cell assay for transposase-accessible chromatin using sequencing

EndICLT:

Endothelial cell-immune cell-like transition

LDL:

Low-density lipoprotein

oxLDL:

Oxidized LDL

LRP1:

Lipoprotein receptor-related protein 1

LOX1:

Lectin-like oxLDL 1 receptor

VSMC:

Vascular smooth muscle cells

IFNγ:

Interferonγ

WSS:

Wall shear stress

MWSS:

Mean WSS

Re:

Reynold’s number

TNF:

Tumor necrosis factor

KLF2:

Krüppel-like factor 2

KLF4:

Krüppel-like factor 4

Par1:

Protease-activated receptor 1

Jnk:

JUN N-terminal kinase

ATF2:

Activating transcription factor 2

eNOS:

Endothelial nitric oxide synthase

TGF β:

Transforming growth factor β

FSP1:

Fibroblast-specific protein 1

vWF:

Von willlebrand factor

AV:

Aortic valve

VEC:

Valvular EC

CYR61:

Cysteine-rich angiogenic inducer 61

CTGF:

Connective tissue growth factor

ANKRD1:

Ankyrin repeat domain 1

LATS:

Large tumor suppressor

HIF-1α:

Hypoxia inducible factor 1-alpha

pVHL:

Von Hippel-Lindau protein

PS:

Pulsatile shear

MYH11:

Myosin heavy chain

ABCA1:

ATP-binding cassette transporter A1

IL-10:

Interleukin-10

HBP1:

HMG box-transcription protein 1

MIF:

Migration inhibitory factor

MCP-1:

Monocyte chemoattractant protein-1

ITGA5:

Integrin subunits α5

HAEC:

Human aortic endothelial cells

OS:

Oscillatory shear

LS:

Laminar shear

iMAEC:

Immortalized mouse aortic endothelial cells

References

  1. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132:1243–52.

    Article  CAS  PubMed  Google Scholar 

  2. Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

    Article  PubMed  Google Scholar 

  3. Heo K-S, Fujiwara K, Abe J-i. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J. 2011;75:2722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davies PF, Polacek DC, Handen JS, et al. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 1999;17:347–51.

    Article  CAS  PubMed  Google Scholar 

  5. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.

    Article  CAS  PubMed  Google Scholar 

  6. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.

    Article  CAS  PubMed  Google Scholar 

  7. Simmons RD, Kumar S, Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys. 2016;591:111–31.

    Article  CAS  PubMed  Google Scholar 

  8. Villa-Roel N, Ryu K, Jo H. Role of Biomechanical stress and mechanosensitive miRNAs in calcific aortic valve disease. In Cardiovascular Calcification and Bone Mineralization, Aikawa, E., Hutcheson, J.D., Eds. Springer International Publishing: Cham, 2020;117–35. https://doi.org/10.1007/978-3-030-46725-8_6pp.

  9. Kumar S, Kim CW, Simmons RD, et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Kim CW, Son DJ, et al. Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo. Sci Data. 2014;1:140039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simmons RD, Kumar S, Thabet SR, et al. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. WIREs Syst Biol Med. 2016;8:378–401.

    Article  CAS  Google Scholar 

  12. Dunn J, Thabet S, Jo H. Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ni C-W, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood. 2010;116:e66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499–508.

    Article  CAS  PubMed  Google Scholar 

  16. Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33:108491.

  17. van Thienen JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72:231–40.

    Article  PubMed  Google Scholar 

  18. Kinderlerer AR, Ali F, Johns M, et al. KLF2-dependent, shear stress-induced expression of CD59. J Biol Chem. 2008;283:14636–44.

    Article  CAS  PubMed  Google Scholar 

  19. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282:13769–79.

    Article  CAS  PubMed  Google Scholar 

  20. Son DJ, Kumar S, Takabe W, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.

    Article  PubMed  Google Scholar 

  21. Nam D, Ni C-W, Rezvan A, et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress: role of c-Myc *. J Biol Chem. 2003;278:32994–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jo H, Song H, Mowbray A. Role of NADPH Oxidases in disturbed flow- and BMP4- Induced inflammation and atherosclerosis. Antioxid Redox Signal. 2006;8:1609–19.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Williams D, Sur S, et al. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc Pharmacol. 2019;114:76–92.

    Article  CAS  Google Scholar 

  25. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  26. Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91:3–6.

    Article  Google Scholar 

  27. Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–91.

    Article  CAS  PubMed  Google Scholar 

  30. Dong ZM, Chapman SM, Brown AA, et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (Icam)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E–deficient mice. J Exp Med. 2000;191:189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503–16.

    Article  CAS  PubMed  Google Scholar 

  33. Ridker PM. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 2016;37:1720–2.

    Article  PubMed  Google Scholar 

  34. Mudau M, Genis A, Lochner A, et al. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23:222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.

    Article  CAS  PubMed  Google Scholar 

  36. Souilhol C, Harmsen MC, Evans PC, et al. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.

    Article  CAS  PubMed  Google Scholar 

  37. Chen P-Y, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17:52–63.

    Article  PubMed  Google Scholar 

  39. van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347:177–86.

    Article  PubMed  Google Scholar 

  40. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho JG, Lee A, Chang W, et al. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction. Front Immunol. 2018;9:294.

  43. Stenmark KR, Frid M, Perros F. Endothelial-to-mesenchymal transition. Circulation. 2016;133:1734–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Demos C, Williams D, Jo H. Disturbed Flow induces atherosclerosis by annexin A2-mediated integrin activation. Circ Res. 2020;127:1091–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hahn BH, Grossman J, Chen W, McMahon M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: roles of inflammation and dyslipidemia. J Autoimmun. 2007;28:69–75.

    Article  CAS  PubMed  Google Scholar 

  46. Silverstein RL. Febbraio M 2009 CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2:re3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zani IA, Stephen SL, Mughal NA, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Basatemur GL, Jørgensen HF, Clarke MCH, et al. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16:727–44.

    Article  PubMed  Google Scholar 

  49. Steinberg D, Witztum JL. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:2311–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hansson GK. Cell-mediated immunity in atherosclerosis. Curr Opin Lipidol. 1997;8:301–11.

    Article  CAS  PubMed  Google Scholar 

  51. Gotsman I, Gupta R, Lichtman AH. The influence of the regulatory t lymphocytes on atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2493–5.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta S, Pablo AM, Jiang X-c, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest. 1997;99:2752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee YW, Kim PH, Lee WH, et al. Interleukin-4, oxidative stress, vascular inflammation and atherosclerosis. Biomol Ther. 2010;18:135–44.

    Article  CAS  Google Scholar 

  54. Majesky MW, Dong XR, Hoglund V, et al. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999;5:40–6.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka H, Shimizu S, Ohmori F, et al. Increases in blood flow and shear stress to nonworking limbs during incremental exercise. Med Sci Sports Exerc. 2006;38:81–5.

    Article  PubMed  Google Scholar 

  57. Ando J, Yamamoto K. Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal. 2011;15:1389–403.

    Article  CAS  PubMed  Google Scholar 

  58. Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:263870.

    PubMed  PubMed Central  Google Scholar 

  59. Williams D, Mahmoud M, Liu R, et al. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife. 2022;11:e72579.

  60. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85:9–23.

    Article  CAS  PubMed  Google Scholar 

  61. Ghalichi F, Deng X, De Champlain A, et al. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology. 1998;35:281–94.

    Article  CAS  PubMed  Google Scholar 

  62. Kinlay S, Grewal J, Manuelin D, et al. Coronary flow velocity and disturbed flow predict adverse clinical outcome after coronary angioplasty. Arterioscler Thromb Vasc Biol. 2002;22:1334–40.

    Article  CAS  PubMed  Google Scholar 

  63. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117:1082–9.

    Article  PubMed  Google Scholar 

  64. Hwang J, Ing MH, Salazar A, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93:1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrison D, Griendling KK, Landmesser U, et al. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91:7a–11a.

    Article  CAS  PubMed  Google Scholar 

  66. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, et al. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177–85.

    Article  PubMed  Google Scholar 

  67. Chien S. Effects of disturbed flow on endothelial cells. Ann Biomed Eng. 2008;36:554–62.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baek KI, Li R, Jen N, et al. Flow-responsive vascular endothelial growth factor receptor-protein kinase C isoform epsilon signaling mediates glycolytic metabolites for vascular repair. antioxid. Redox Signal. 2018;28:31–43.

    Article  CAS  Google Scholar 

  69. Wu D, Huang R-T, Hamanaka RB, et al. HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. eLife. 2017;6:e25217.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li R, Jen N, Wu L, et al. Disturbed flow induces autophagy, but impairs autophagic flux to perturb mitochondrial homeostasis. Antioxid Redox Signal. 2015;23:1207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheng C, Helderman F, Tempel D, et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 2007;195:225–35.

    Article  CAS  PubMed  Google Scholar 

  72. Samijo SK, Willigers JM, Barkhuysen R, et al. Wall shear stress in the human common carotid artery as function of age and gender. Cardiovasc Res. 1998;39:515–22.

    Article  CAS  PubMed  Google Scholar 

  73. Callaghan FM, Grieve SM. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am J Physiol Heart Circ Physiol. 2018;315:H1174–81.

    Article  PubMed  Google Scholar 

  74. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.

    Article  CAS  PubMed  Google Scholar 

  75. LaBarbera M. Principles of design of fluid transport systems in zoology. Science. 1990;249:992–1000.

    Article  CAS  PubMed  Google Scholar 

  76. Girerd X, London G, Boutouyrie P, et al. Remodeling of the radial artery in response to a chronic increase in shear stress. Hypertension (Dallas, Tex : 1979). 1996;27:799–803.

    Article  CAS  PubMed  Google Scholar 

  77. Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol. 1926;9:835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li YH, Reddy AK, Taffet GE, et al. Doppler evaluation of peripheral vascular adaptations to transverse aortic banding in mice. Ultrasound Med Biol. 2003;29:1281–9.

    Article  PubMed  Google Scholar 

  79. Marano G, Palazzesi S, Vergari A, et al. Protection by shear stress from collar-induced intimal thickening: role of nitric oxide. Arterioscler Thromb Vasc Biol. 1999;19:2609–14.

    Article  CAS  PubMed  Google Scholar 

  80. Ibrahim J, Miyashiro JK, Berk BC. Shear stress is differentially regulated among inbred rat strains. Circ Res. 2003;92:1001–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lee K, Choi M, Yoon J, et al. Spectral waveform analysis of major arteries in conscious dogs by Doppler ultrasonography. Vet Radiol Ultrasound. 2004;45:166–71.

    Article  CAS  PubMed  Google Scholar 

  82. Ross G, White FN, Brown AW, et al. Regional blood flow in the rat. J Appl Physiol. 1966;21:1273–5.

    Article  CAS  PubMed  Google Scholar 

  83. Snow HM, Markos F, O’Regan D, et al. Characteristics of arterial wall shear stress which cause endothelium-dependent vasodilatation in the anaesthetized dog. J Physiol. 2001;531:843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. LaDisa JF Jr, Olson LE, Molthen RC, et al. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol. 2005;288:65–75.

    Article  Google Scholar 

  85. Demos C, Tamargo I, Jo H. Chapter 1 - biomechanical regulation of endothelial function in atherosclerosis. In Biomechanics of Coronary Atherosclerotic Plaque, Ohayon, J., Finet, G., Pettigrew, R.I., Eds. Academic Press: 2021; vol. 4, pp 3–47.

  86. Kwak BR, Bäck M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35(3013–20):20a–20d.

    Google Scholar 

  87. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    CAS  PubMed  Google Scholar 

  89. Davis ME, Cai H, Drummond GR, et al. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res. 2001;89:1073–80.

    Article  CAS  PubMed  Google Scholar 

  90. Gachhui R, Abu-Soud HM, Ghosha DK, et al. Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras. J Biol Chem. 1998;273:5451–4.

    Article  CAS  PubMed  Google Scholar 

  91. Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992;90:2092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995;96:60–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dimmeler S, Haendeler J, Nehls M, et al. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997;185:601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dimmeler S, Hermann C, Galle J, et al. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:656–64.

    Article  CAS  PubMed  Google Scholar 

  95. Li J, Billiar TR, Talanian RV, et al. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240:419–24.

    Article  CAS  PubMed  Google Scholar 

  96. Tsao PS, Lewis NP, Alpert S, et al. Exposure to shear stress alters endothelial adhesiveness Role of nitric oxide. Circulation. 1995;92:3513–9.

    Article  CAS  PubMed  Google Scholar 

  97. Rössig L, Haendeler J, Hermann C, et al. Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem. 2000;275:25502–7.

    Article  PubMed  Google Scholar 

  98. Kim YM, de Vera ME, Watkins SC, et al. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem. 1997;272:1402–11.

    Article  CAS  PubMed  Google Scholar 

  99. Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI insight. 2017;2:e91700.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): what we currently know. Gene. 2017;611:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Das H, Kumar A, Lin Z, et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci USA. 2006;103:6653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin Z, Hamik A, Jain R, et al. Kruppel-like factor 2 inhibits protease activated receptor-1 expression and thrombin-mediated endothelial activation. Arterioscler Thromb Vasc Biol. 2006;26:1185–9.

    Article  CAS  PubMed  Google Scholar 

  105. Lingrel JB, Pilcher-Roberts R, Basford JE, et al. Myeloid-specific Krüppel-like factor 2 inactivation increases macrophage and neutrophil adhesion and promotes atherosclerosis. Circ Res. 2012;110:1294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sweet DR, Fan L, Hsieh PN, et al. Krüppel-like factors in vascular inflammation: mechanistic insights and therapeutic potential. Frontiers in cardiovascular medicine. 2018;5:6.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fledderus JO, Boon RA, Volger OL, et al. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:1339–46.

    Article  CAS  PubMed  Google Scholar 

  108. Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood. 2002;100:1689–98.

    Article  CAS  PubMed  Google Scholar 

  109. Turpaev KT. Transcription factor KLF2 and its role in the regulation of inflammatory processes. Biochemistry Biokhimiia. 2020;85:54–67.

    Article  CAS  PubMed  Google Scholar 

  110. Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation. 2011;124:633–41.

    Article  CAS  PubMed  Google Scholar 

  111. Schober A, Weber C. Mechanisms of microRNAs in atherosclerosis. Annu Rev Pathol. 2016;11:583–616.

    Article  CAS  PubMed  Google Scholar 

  112. Mathieu P, Pibarot P, Després JP. Metabolic syndrome: the danger signal in atherosclerosis. Vasc Health Risk Manage. 2006;2:285–302.

    Article  CAS  Google Scholar 

  113. Yang Q, Xu J, Ma Q, et al. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun. 2018;9:4667.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Doddaballapur A, Michalik KM, Manavski Y, et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 2015;35:137–45.

    Article  CAS  PubMed  Google Scholar 

  115. Perrotta P, Van der Veken B, Van Der Veken P, et al. Partial inhibition of glycolysis reduces atherogenesis independent of intraplaque neovascularization in mice. Arterioscler Thromb Vasc Biol. 2020;40:1168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heo KS, Berk BC, Abe J. Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events. Antioxid Redox Signal. 2016;25:435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Villarreal G Jr, Zhang Y, Larman HB, et al. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2010;391:984–9.

    Article  CAS  PubMed  Google Scholar 

  118. Endres M, Laufs U, Merz H, et al. Focal expression of intercellular adhesion molecule-1 in the human carotid bifurcation. Stroke. 1997;28:77–82.

    Article  CAS  PubMed  Google Scholar 

  119. Yousef GM, Luo LY, Diamandis EP. Identification of novel human kallikrein-like genes on chromosome 19q13.3–q13.4. Anticancer Res. 1999;19:2843–52.

    CAS  PubMed  Google Scholar 

  120. Diamandis EP, Yousef GM, Clements J, et al. New nomenclature for the human tissue kallikrein gene family. Clin Chem. 2000;46:1855–8.

    Article  CAS  PubMed  Google Scholar 

  121. Wang GL, Jiang B-H, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8:588–94.

    Article  CAS  PubMed  Google Scholar 

  123. Greijer A, Van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57:1009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Déry M-AC, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem. 2005;37:535–40.

    Article  Google Scholar 

  125. Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1997;94:8104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fernandez Esmerats J, Villa-Roel N, Kumar S, et al. Disturbed flow increases UBE2C (Ubiquitin E2 Ligase C) via loss of miR-483-3p, inducing aortic valve calcification by the pVHL (von Hippel-Lindau protein) and HIF-1α (hypoxia-inducible factor-1α) pathway in endothelial cells. Arterioscler Thromb Vasc Biol. 2019;39:467–81.

    Article  CAS  PubMed  Google Scholar 

  127. Feng S, Bowden N, Fragiadaki M, et al. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler Thromb Vasc Biol. 2017;37:2087–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Akhtar S, Hartmann P, Karshovska E, et al. Endothelial hypoxia-inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension (Dallas, Tex : 1979). 2015;66:1220–6.

    Article  CAS  PubMed  Google Scholar 

  129. Salim MT, Villa-Roel N, Vogel B, et al. HIF1A inhibitor PX-478 reduces pathological stretch-induced calcification and collagen turnover in aortic valve. Front Cardiovasc Med. 2022;9:1002067.

  130. Demos C, Johnson J, Andueza A, et al. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med. 2022;9:979745.

  131. Wang K-C, Garmire LX, Young A, et al. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A. 2010;107:3234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Iaconetti C, De Rosa S, Polimeni A, et al. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 2015;107:522–33.

    Article  CAS  PubMed  Google Scholar 

  133. Chen K, Fan W, Wang X, et al. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells. Biochem Biophys Res Commun. 2012;427:138–42.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang N, Lei J, Lei H, et al. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res. 2015;336:33–42.

    Article  CAS  PubMed  Google Scholar 

  135. Qin X, Wang X, Wang Y, et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2010;107:3240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ren Z-Q, Liu N, Zhao K. Micro RNA-19a suppresses IL-10 in peripheral B cells from patients with atherosclerosis. Cytokine. 2016;86:86–91.

    Article  CAS  PubMed  Google Scholar 

  137. Chen H, Li X, Liu S, et al. MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci Rep. 2017;7:12089.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.

    Article  CAS  PubMed  Google Scholar 

  140. Wang W-L, Chen L-J, Wei S-Y, et al. Mechanoresponsive Smad5 enhances MiR-487a processing to promote vascular endothelial proliferation in response to disturbed flow. Front Cell Dev Biol. 2021;9:647714.

  141. Lee S, Jue M, Cho M, et al. Label-free atherosclerosis diagnosis through a blood drop of apolipoprotein E knockout mouse model using surface-enhanced Raman spectroscopy validated by machine learning algorithm. Bioeng Transl Med. 2023;8:e10529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Institutes of Health 5T32HL007745-28 (KB).

Funding

National Institutes of Health, 5T32HL007745-28, Kyung In Baek

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Ryu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human Subjects/Informed Consent Statement

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Judith Sluimer oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, K.I., Ryu, K. Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development. J. of Cardiovasc. Trans. Res. (2023). https://doi.org/10.1007/s12265-023-10463-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-023-10463-w

Keywords

Navigation