Skip to main content

Anwendungsmöglichkeiten von Geographischen Informationssystemen in der humanitären Logistik

  • Chapter
  • First Online:
Supply Management Research

Part of the book series: Advanced Studies in Supply Management ((ASSM))

  • 3861 Accesses

Abstract

Immer wieder erschüttern unvorhergesehene Katastrophen die Welt und verursachen enorme humanitäre und volkswirtschaftliche Schäden. Nach einer Katastrophe fehlen den Akteuren der Hilfseinsätze häufig Informationen über die genaue Situation vor Ort, was eine bedarfsgerechte Versorgung der Betroffenen inkl. der Beschaffung aller benötigten Hilfsgüter und Ausrüstungsgegenstände erschwert. Mittels einer systematischen Literaturrecherche soll erfasst werden, in welcher Form und in welchem Umfang Geographische Informationssysteme (GIS) zur Unterstützung der humanitären Logistik eingesetzt werden können. Dabei werden verschiedene Anwendungsmöglichkeiten von GIS identifiziert, bspw. die Erstellung von Lagebeurteilungen nach einer Katastrophe oder die Standortbestimmung von Hilfsgüterverteilzentren in der Katastrophenvorsorge. Die Ergebnisdarstellung der Recherche erfolgt mithilfe eines Ordnungsrahmens in einem anwendungsorientierten Bezug. Darüber hinaus wird den Akteuren der humanitären Beschaffungslogistik ein umfassender Überblick über aktuelle und potenzielle zukünftige Einsatzmöglichkeiten von GIS geboten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abidi, H.; de Leeuw, S.; Klumpp, M. (2014): Humanitarian supply chain performance management: a systematic literature review, in: Supply Chain Manag. An Int. J., 19 (5/6), pp. 592–608.

    Article  Google Scholar 

  • Alamdar, F.; Kalantari, M.; Rajabifard, A. (2016): Towards multi‐agency sensor information integration for disaster management, in: Comput. Environ. Urban Syst., 56, pp. 68–85.

    Article  Google Scholar 

  • Alizadeh, M.; Ngah, I.; Hashim, M.; Pradhan, B.; Pour, A. (2018): A Hybrid Analytic Network Process and Artificial Neural Network (ANP‐ANN) Model for Urban Earthquake Vulnerability Assessment, in: Remote Sens., 10 (6), 975.

    Article  Google Scholar 

  • Alwis Pitts, D.A. de; So, E. (2017): Enhanced change detection index for disaster response, recovery assessment and monitoring of buildings and critical facilities—A case study for Muzzaffarabad, Pakistan, in: Int. J. Appl. Earth Obs. Geoinf., 63, pp. 167–177.

    Google Scholar 

  • Aslam, A.Q.; Ahmad, I.; Ahmad, S.R.; Hussain, Y.; Hussain, M.S.; Shamshad, J.; Zaidi, S.J.A. (2018): Integrated climate change risk assessment and evaluation of adaptation perspective in southern Punjab, Pakistan, in: Sci. Total Environ., 628–629, pp. 1422–1436.

    Google Scholar 

  • Balkaya, C.; Casciati, F.; Casciati, S.; Faravelli, L.; Vece, M. (2015): Real‐time identification of disaster areas by an open‐access vision‐based tool, in: Adv. Eng. Softw., 88, pp. 83–90.

    Article  Google Scholar 

  • Bill, R. (2016): Grundlagen der Geo‐Informationssysteme, Karlsruhe.

    Google Scholar 

  • Blecken, A. (2009): A Reference Task Model for Supply Chain Processes of Humanitarian Organisations, Universität Paderborn.

    Google Scholar 

  • Brocke, J. vom; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A. (2009): Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature Search Process, in: 17th Eur. Conf. Inf. Syst., 9, pp. 2206–2217.

    Google Scholar 

  • Chen, Z.; Chen, X.; Li, Q.; Chen, J. (2013): The temporal hierarchy of shelters: a hierarchical location model for earthquake‐shelter planning, in: Int. J. Geogr. Inf. Sci., 27 (8), pp. 1612–1630.

    Article  Google Scholar 

  • Cleary, P.W.; Prakash, M.; Mead, S.; Tang, X.; Wang, H.; Ouyang, S. (2012): Dynamic simulation of dam‐break scenarios for risk analysis and disaster management, in: Int. J. Image Data Fusion, 3 (4), pp. 333–363.

    Article  Google Scholar 

  • Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Dhakal, S.; Paudyal, P. (2008): Predictive modelling of rainfall‐induced landslide hazard in the Lesser Himalaya of Nepal based on weights‐of‐evidence, in: Geomorphology, 102 (3–4), pp. 496–510.

    Article  Google Scholar 

  • Fatemi Aghda, S.M.; Bagheri, V.; Razifard, M. (2017): Landslide Susceptibility Mapping Using Fuzzy Logic System and Its Influences on Mainlines in Lashgarak Region, Tehran, Iran, in: Geotech. Geol. Eng., 36 (2), pp. 915–937.

    Google Scholar 

  • Grün, O.; Schenker‐Wicki, A. (2014): Katastrophenmanagement. Grundlagen, Fallbeispiele und Gestaltungsoptionen aus betriebswirtschaftlicher Sicht, Wiesbaden.

    Google Scholar 

  • Gustavsson, L. (2003): Humanitarian logistics: context and challenges, in: Forced Migr. Rev. 18, pp. 6–8.

    Google Scholar 

  • Haselkorn, M.; Walton, R. (2009): The Role of Information and Communication in the Context of Humanitarian Service, in: IEEE Trans. Prof. Commun., 52 (4), pp. 325–328.

    Article  Google Scholar 

  • Hashemi, M.; Alesheiskh A. (2011): A GIS‐based earthquake damage assessment and settlement methodoloy, in: Soil. Dyn. Earthq. Eng., 31 (11), pp. 1607‐1617.

    Article  Google Scholar 

  • Hassanzadeh, R.; Nedović‐ Budić, Z.; Alavi Razavi, A.; Norouzzadeh, M.; Hodhodkian, H. (2013): Interactive approach for GIS‐based earthquake scenario development and resource estimation (Karmania hazard model), in: Comput. Geosci., 51, pp. 324–338.

    Article  Google Scholar 

  • Heaslip, G. E.; Barber, E. (2016): Improving civil–military coordination in humanitarian logistics: the challenge, in: Irish J. Manag., 35(2), 143–158.

    Article  Google Scholar 

  • Hegde, V. S.; Jayaraman, V.; Srivastava, S.K. (2009): India’s EO infrastructure for disaster reduction: Lessons and perspectives, in: Acta Astronaut., 65 (9–10), pp. 1471–1478.

    Article  Google Scholar 

  • Hein, C.; Lasch, R. (2017): Secondary Data Reviews in the Context of Humanitarian Needs Assessments: Determination of Requirements, in: Bode, C., u.a. (Hrsg.): Supply Management Research – Aktuelle Forschungsergebnisse 2017, S. 129–144.

    Chapter  Google Scholar 

  • Hoque, M.A.‐A.; Phinn, S.; Roelfsema, C.; Childs, I. (2017): Tropical cyclone disaster management using remote sensing and spatial analysis: A review, in: Int. J. Disaster Risk Reduct., 22, pp. 345–354.

    Article  Google Scholar 

  • Kalaivani, R.; Thangaraj, P. (2013): An effective technique to identify a river’s stage through satellite images by means of RBFNN, in: Imaging Sci. J., 61 (3), pp. 279–291.

    Article  Google Scholar 

  • Kappas, M. (2012): Geographische Informationssysteme, Braunschweig.

    Google Scholar 

  • Khair, F.; Sopha, B.M. (2017): Evaluation of location and number of aid post for sustainable humanitarian relief using agent based modeling (ABM) and geographic information system (GIS), in: IOP Conf. Ser. Earth Environ. Sci., 109 (1), 012001.

    Article  Google Scholar 

  • Kwan, M.‐P.; Ransberger, D.M. (2010): LiDAR assisted emergency response: Detection of transport network obstructions caused by major disasters, in: Comput. Environ. Urban Syst., 34 (3), pp. 179–188.

    Article  Google Scholar 

  • Lasch, R. (2017): Strategisches und operatives Logistikmanagement: Beschaffung, Wiesbaden.

    Google Scholar 

  • Leon, F.; Zaharia, M.H.; Atanasiu, G.M. (2008): Adaptive multiagent system for seismic emergency management, in: Manag. Mark., 3 (4), pp. 73–80.

    Google Scholar 

  • Lepuschitz, E. (2015): Geographic information systems in mountain risk and disaster management, in: Appl. Geogr., 63, pp. 212–219.

    Article  Google Scholar 

  • Li, C. (2015): Multi‐Sensor Data Fusion for Geohazards Early Warning System‐An Adapted Process Model, Rheinisch‐Westfälische Technische Hochschule Aachen.

    Google Scholar 

  • Li, W.; Xie, L.; Lei, Y.; Guo, Y.; Zhou, X. (2018): Research and application of heat map system for resource allocation of flood control based on GIS, in: ITM Web Conf., 17, 03001.

    Article  Google Scholar 

  • Lieser, J.; Dijkzeul, D. (2013): Handbuch Humanitäre Hilfe, Heidelberg.

    Google Scholar 

  • Louhisuo, M.; Veijonen, T.; Ahola, J.; Morohoshi, T. (2007): A disaster information and monitoring system utilizing earth observation, in: Manag. Environ. Qual. An Int. J., 18 (3), pp. 246–262.

    Article  Google Scholar 

  • Mahmood, S.; Khan, A. ul H.; Ullah, S. (2016): Assessment of 2010 flash flood causes and associated damages in Dir Valley, Khyber Pakhtunkhwa Pakistan, in: Int. J. Disaster Risk Reduct., 16, pp. 215–223.

    Article  Google Scholar 

  • Mhaske, S.Y.; Choudhury, D. (2010): GIS‐based soil liquefaction susceptibility map of Mumbai city for earthquake events, in: J. Appl. Geophys., 70 (3), pp. 216–225.

    Article  Google Scholar 

  • Ntajal, J.; Lamptey, B.L.; Mahamadou, I.B.; Nyarko, B.K. (2017): Flood disaster risk mapping in the Lower Mono River Basin in Togo, West Africa, in: Int. J. Disaster Risk Reduct., 23, pp. 93–103.

    Article  Google Scholar 

  • Perras, A. (2018): Zwei Erdbeben und dann noch ein verheerender Tsunami. Online unter: https://www.sueddeutsche.de/panorama/naturkatastrophe‐inindonesien‐zwei‐erdbeben‐und‐dann‐noch‐ein‐verheerender‐tsunami‐1.4150723 (abgerufen am: 1. Oktober 2018).

  • Qin, Q.M.; Ma, H. J.; Li, J. (2011): Damage Detection and Assessment System of Roads for Decision Support for Disaster, in: Key Eng. Mater., 467–469, pp. 1144–1149.

    Google Scholar 

  • Rahmati, O.; Pourghasemi, H.R. (2017): Identification of Critical Flood Prone Areas in Data‐Scarce and Ungauged Regions: A Comparison of Three Data Mining Models, in: Water Resour. Manag., 31 (5), pp. 1473–1487.

    Article  Google Scholar 

  • Rancourt, M.‐È.; Cordeau, J.‐F.; Laporte, G.; Watkins, B. (2015): Tactical network planning for food aid distribution in Kenya, in: Comput. Oper. Res., 56, pp. 68–83.

    Article  Google Scholar 

  • Razifard, M.; Shoaei, G.; Zare, M. (2018): Application of fuzzy logic in the preparation of hazard maps of landslides triggered by the twin Ahar‐Varzeghan earthquakes (2012), in: Bull. Eng. Geol. Environ., pp. 1–23.

    Google Scholar 

  • Regmi, N.R.; Giardino, J.R.; Vitek, J.D. (2010): Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA, in: Geomorphology, 115 (1–2), pp. 172–187.

    Article  Google Scholar 

  • Rezaei‐Malek, M.; Tavakkoli‐Moghaddam, R.; Zahiri, B.; Bozorgi‐Amiri, A. (2016): An interactive approach for designing a robust disaster relief logistics network with perishable commodities, in: Comput. Ind. Eng., 94, pp. 201–215.

    Article  Google Scholar 

  • Rodríguez‐Espíndola, O.; Albores, P.; Brewster, C. (2016): GIS and Optimisation: Potential Benefits for Emergency Facility Location in Humanitarian Logistics, in: Geosciences, 6 (2), 18.

    Article  Google Scholar 

  • Rowley, J.; Slack, F. (2004): Conducting a literature review, in: Manag. Res. News, 27 (6), pp. 31–39.

    Article  Google Scholar 

  • Sadrykia, M.; Delavar, M.R.; Zare, M. (2017): A GIS‐based decision making model using fuzzy sets and theory of evidence for seismic vulnerability assessment under uncertainty (case study: Tabriz), in: J. Intell. Fuzzy Syst., 33 (3), pp. 1969–1981.

    Article  Google Scholar 

  • Saeidian, B.; Mesgari, M.S.; Ghodousi, M. (2016): Evaluation and comparison of Genetic Algorithm and Bees Algorithm for location–allocation of earthquake relief centers, in: Int. J. Disaster Risk Reduct., 15, pp. 94–107.

    Article  Google Scholar 

  • Sahin, A.; Sisman, R.; Askan, A.; Hori, M. (2016): Development of integrated earthquake simulation system for Istanbul, in: Earth, Planets Sp., 68 (1), 115.

    Google Scholar 

  • Thomas, A.; Kopczak, L. (2005): From logistics to supply chain management: the path forward in the humanitarian sector, Fritz Institute.

    Google Scholar 

  • Timperio, G.; Panchal, G.B.; Samvedi, A.; Goh, M.; De Souza, R. (2017): Decision support framework for location selection and disaster relief network design, in: J. Humanit. Logist. Supply Chain Manag., 7 (3), pp. 222–245.

    Article  Google Scholar 

  • Tran, P.; Shaw, R.; Chantry, G.; Norton, J. (2009): GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam, in: Disasters, 33 (1), pp. 152–169.

    Google Scholar 

  • Trestrail, J.; Paul, J.; Maloni, M. (2009): Improving bid pricing for humanitarian logistics, in: Int. J. Phys. Distrib. Logist. Manag., 39 (5), pp. 428–441.

    Article  Google Scholar 

  • d’Uffizi, A.; Simonetti, M.; Stecca, G.; Confessore, G. (2015): A Simulation Study of Logistics for Disaster Relief Operations, in: Procedia CIRP, 33, pp. 157–162.

    Google Scholar 

  • Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. (2014): Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia, in: CATENA, 118, pp. 124–135.

    Google Scholar 

  • Wan, K.M.; Billa, L. (2018): Post‐flood land use damage estimation using improved Normalized Difference Flood Index (NDFI3) on Landsat 8 datasets: December 2014 floods, Kelantan, Malaysia, in: Arab. J. Geosci., 11 (15), 434.

    Google Scholar 

  • Wang, J.; Qin, Q.; Zhao, J.; Ye, X.; Feng, X.; Qin, X.; Yang, X.; Wang, J.; Qin, Q.; Zhao, J.; Ye, X.; Feng, X.; Qin, X.; Yang, X. (2015): Knowledge‐Based Detection and Assessment of Damaged Roads Using Post‐Disaster High‐Resolution Remote Sensing Image, in: Remote Sens., 7 (4), pp. 4948–4967.

    Article  Google Scholar 

  • Widener, M.J.; Horner, M.W. (2011): A hierarchical approach to modeling hurricane disaster relief goods distribution, in: J. Transp. Geogr., 19 (4), pp. 821–828.

    Article  Google Scholar 

  • Xu, K.; Guo, Q.; Li, Z.; Xiao, J.; Qin, Y.; Chen, D.; Kong, C. (2015): Landslide susceptibility evaluation based on BPNN and GIS: a case of Guojiaba in the Three Gorges Reservoir Area, in: Int. J. Geogr. Inf. Sci., 29 (7), pp. 1111–1124.

    Article  Google Scholar 

  • Yuan, S.; Guo, J.; Zhao, X. (2017): Integrated Weighting Technique for Coastal Vulnerability to Storm Surges, in: J. Coast. Res., 80, pp. 6–12.

    Article  Google Scholar 

  • Zhong, G.; Liu, S.; Han, C.; Huang, W. (2014): Urban Flood Maping for Jiaxing City Based on Hydrodynamic Modeling and GIS Analysis, in: J. Coast. Res., 68, pp. 168–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keller, J., Hein, C., Lasch, R. (2019). Anwendungsmöglichkeiten von Geographischen Informationssystemen in der humanitären Logistik. In: Bode, C., Bogaschewsky, R., Eßig, M., Lasch, R., Stölzle, W. (eds) Supply Management Research. Advanced Studies in Supply Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-26954-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-26954-8_8

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-26953-1

  • Online ISBN: 978-3-658-26954-8

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics