Skip to main content

Deep Sequencing of T-Cell and B-Cell Receptors with Next-Generation DNA Sequencers

  • Chapter
Immunopharmacogenomics

Abstract

Both T and B lymphocytes work as key effectors of adaptive immunity, recognizing a broad range of antigens with their specialized receptors (B-cell receptor in B lymphocytes, T-cell receptor in T lymphocytes). The unique rearrangement of variable (V), diversity (D), and joining (J) gene segments and the somatic hypermutations (SHM) of BCR and TCR create immense immune repertoires. Approaches such as flow cytometry, CDR3 spectratyping, or capillary-based sequencing are unable to comprehensively characterize extremely diverse immune repertoires, whereas recent advances in next-generation sequencing (NGS) enable us to examine such complicated repertoires and unravel the complexity of the immune repertoires. Application of NGS to TCR and BCR analysis has great potential to improve the monitoring of lymphoid malignancies and the assessing of immune reconstitution after hematopoietic stem cell transplantation, to better characterize immune system dysfunction in various disease conditions, including autoimmune diseases and food and drug allergies, and to determine the immune responses in various treatments (immunotherapy, radiation therapy, and chemotherapy). Here we review the role of NGS in analyzing these immune repertoires and discuss how to optimize a protocol for an unbiased preparation of TCR and BCR libraries for NGS immune repertoire analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sompayrac LM. How the immune system works. 4th ed. New York: Wiley; 2012.

    Google Scholar 

  2. Janeway CA, Travers P, Walport M. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science; 2005. Glossary.

    Google Scholar 

  3. Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006;24:541–70.

    Article  CAS  PubMed  Google Scholar 

  4. Lefranc M-P, Lefranc G. The T cell receptor FactsBook. San Diego: Academic; 2001. 398 pages. ISBN 0124413528.

    Google Scholar 

  5. Scaviner D, Lefranc M-P. The human T cell receptor alpha variable (TRAV) genes. Exp Clin Immunogenet. 2000;17:83–96.

    Article  CAS  PubMed  Google Scholar 

  6. Folch G, Lefranc M-P. The human T cell receptor beta variable (TRBV) genes. Exp Clin Immunogenet. 2000;17:42–54.

    Article  CAS  PubMed  Google Scholar 

  7. Robins HS, et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med. 2010;2(47):47ra64.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Murugan A, Mora T, Walczak AM, Callan Jr CG. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc Natl Acad Sci U S A. 2012;109(40):16161–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature (Lond). 1988;334(6181):395–402.

    Article  CAS  Google Scholar 

  10. Shlomchik WD. Graft-versus-host-disease. Nat Rev Immunol. 2007;7:340–52.

    Article  CAS  PubMed  Google Scholar 

  11. Ichiki Y, Bowlus CL, Shimoda S, Ishibashi H, Vierling JM, Gershwin ME. T cell immunity and graft versus host disease (GVHD). Autoimmun Rev. 2005;5:1–9.

    Article  PubMed  Google Scholar 

  12. Woodsworth DJ, Castellarin M, Holt RA. Sequence analysis of T-cell repertoires in health and disease. Genome Med. 2013;5(10):98.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 2009;19:1817–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cole DJ, Weil DP, Shamamian P, et al. Identification of MART-1-specific T-cell receptors: T cells utilizing distinct T-cell receptor variable and joining regions recognize the same tumor epitope. Cancer Res. 1994;54(20):5265–8.

    CAS  PubMed  Google Scholar 

  15. Simon P, Omokoko TA, Breitkreuz A, et al. Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes. Cancer Immunol Res. 2014;2(12):1230–44.

    Article  CAS  PubMed  Google Scholar 

  16. Lefranc M-P, Lefranc G. The immunoglobulin FactsBook. San Diego: Academic; 2001. 458 pages. ISBN 012441351X.

    Google Scholar 

  17. Treanor B. B-cell receptor: from resting state to activate. Immunology. 2012;136(1):21–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Faint JM, Pilling D, Akbar AN, et al. Quantitative flow cytometry for the analysis of T cell receptor Vβ chain expression. J Immunol Methods. 1999;225:53–60.

    Article  CAS  PubMed  Google Scholar 

  19. Aghaeepour N, Chattopadhyay PK, Ganesan A, et al. Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics. 2012;28:1009–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kaminski DA, Wei C, Qian Y, et al. Advances in human B cell phenotypic profiling. Front Immunol. 2012;3:302.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Metzker ML. Sequencing technologies: the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  22. Calis JJ, Rosenberg BR. Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol. 2014;35(12):581–90.

    Article  CAS  PubMed  Google Scholar 

  23. Six A, Mariotti-Ferrandiz ME, Chaara W, et al. The past, present, and future of immune repertoire biology: the rise of next-generation repertoire analysis. Front Immunol. 2013;4:413.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fang H, Yamaguchi R, Liu X. Quantitative T cell repertoire analysis by deep cDNA sequencing of T cell receptor α and β chains using next-generation sequencing (NGS). Oncoimmunology. 2014;3(12):e968467.

    Article  PubMed  Google Scholar 

  25. Baum PD, Venturi V, Price DA. Wrestling with the repertoire: the promise and perils of next generation sequencing for antigen receptors. Eur J Immunol. 2012;42:2834–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mamedov IZ, Britanova OV, Zvyagin IV, et al. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol. 2013;4:456.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Georgiou G, Ippolito GC, Beausang J, et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol. 2014;32(2):158–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Warren EH, Matsen 4th FA, Chou J. High-throughput sequencing of B- and T-lymphocyte antigen receptors in hematology. Blood. 2013;122(1):19–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Boyd SD, Marshall EL, Merker JD, et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med. 2009;1:12.

    Article  Google Scholar 

  30. Venturi V, Quigley MF, Greenaway HY, et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J Immunol. 2011;186:4285–94.

    Article  CAS  PubMed  Google Scholar 

  31. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alpha,beta T cells. Blood. 2009;114:4099–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Warren RL, Freeman JD, Zeng T, et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 2011;21:790.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tamura K, Hazama S, Yamaguchi R, et al. Characterization of T cell repertoire in advanced colorectal cancers through deep T cell receptor sequencing. Oncol Lett (in press)

    Google Scholar 

  34. Jang M, Yew PY, Hasegawa K, et al. Characterization of T cell repertoire of blood, tumor and ascites in ovarian cancer patients using next generation sequencing. Oncoimmunology. 2015. doi:10.1080/2162402X.2015.1030561

  35. Liu, X, Venkataraman G, Lin J, et al. Highly clonal regulatory T cell population in follicular lymphoma: inverse correlation with the diversity of CD8+ T cells. Oncoimmunology 2015; 4(5):e1002728.

    Google Scholar 

  36. Yew PY, Alachkar H, Yamaguchi R, et al. Quantitative characterization of T cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2015. doi:10.1038/bmt.2015.133.

  37. Campbell PJ, Pleasance ED, Stephens PJ, et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci U S A. 2008;105(35):13081–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Boyd SD, Gaëta BA, Jackson KJ. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol. 2010;184(12):6986–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cancro MP, Hao Y, Scholz JL, et al. B cells and aging: molecules and mechanisms. Trends Immunol. 2009;30(7):313–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mori A, Deola S, Xumerle L, et al. Next generation sequencing: new tools in immunology and hematology. Blood Res. 2013;48(4):242–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Reddy ST, Ge X, Miklos AE, et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol. 2010;28(9):965–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhai W, Glanville J, Fuhrmann M, et al. Synthetic antibodies designed on natural sequence landscapes. J Mol Biol. 2011;412:55–71.

    Article  CAS  PubMed  Google Scholar 

  43. Bashford-Rogers RJ, Palser AL, Idris SF, et al. Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol. 2014;15:29.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhu J, Ofek G, Yang Y, et al. Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proc Natl Acad Sci U S A. 2013;110(16):6470–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. DeKosky BJ, Ippolito GC, Deschner RP, et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol. 2013;31(2):166–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Turchaninova MA, Britanova OV, Bolotin DA, et al. Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol. 2013;43(9):2507–15.

    Article  CAS  PubMed  Google Scholar 

  47. Kim SM, Bhonsle L, Besgen P, et al. Analysis of the paired TCR α- and β-chains of single human T cells. PLoS One. 2012;7(5), e37338.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Dash P, McClaren JL, Oguin TH, et al. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J Clin Invest. 2011;121(1):288–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Seitz S, Schneider CK, Malotka J, et al. Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues. Proc Natl Acad Sci U S A. 2006;103:12057–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poh Yin Yew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Jang, M., Yew, P.Y. (2015). Deep Sequencing of T-Cell and B-Cell Receptors with Next-Generation DNA Sequencers. In: Nakamura, Y. (eds) Immunopharmacogenomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55726-5_1

Download citation

Publish with us

Policies and ethics