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Abstract: Wind turbine blade leading-edge erosion (LEE) is a cause of increased operation and main-
tenance costs and decreased annual energy production. Thus, detailed, site-specific quantification
of likely erosion conditions are critically needed to inform wind plant owner/operator decisions
regarding mitigation strategies. Estimating the damage potential at a wind plant site requires accu-
rate measurement of precipitation intensity, phase, droplet size distributions, wind speeds and their
joint statistics. The current work quantifies the effect of disdrometer type on the characterization
of LEE potential at a site in the US Southern Great Plains. using observations from three co-located
disdrometers (an optical, an impact and a video disdrometer), along with hub-height wind-speed
observations from a Doppler lidar and two LEE models: a kinetic energy model and the Springer
model. Estimates of total kinetic energy of hydrometeor impacts over the four-year study period
vary by as much as 38%, and coating lifetime derived from accumulated distance-to-failure estimates
from the Springer model differ by an even greater amount, depending on disdrometer type. Damage
potential at this site is concentrated in time, with 50% of impact kinetic energy occurring in 6–12 h per
year, depending on which set of disdrometer observations is used. Rotor-speed curtailment during
the most erosive 0.1–0.2% of 10 min periods is found to increase blade lifetimes and lead to the lowest
levelized cost of energy.

Keywords: wind energy; wind turbines; blade reliability; hydrometeors; erosion; metrology; hail;
droplet size distributions; leading-edge erosion

1. Introduction

Wind turbine blade leading-edge erosion (LEE) refers to the material loss of wind tur-
bine blade coatings leading to exposure and loss of the laminate. LEE reduces aerodynamic
performance and annual energy production (AEP) and is a source of increased operations
and maintenance costs [1–4]. Material loss from the leading edge of the wind turbine blade
leads to roughening of the surface, causing reduced aerodynamic efficiency by reducing lift
and increasing drag [2]. LEE pattern categorization frequently employs five classes, with
Class 1 “small pinholes” exhibiting erosion depth of 0.1–0.2 mm, average feature damage of
2 mm and approximate cord coverage of 3% [3]. Even this level of LEE may result in AEP
loss. Maximum lift has been modeled to be negatively impacted for damage associated
with roughness heights of 0.11 mm for a rotor with a 175 m diameter [1]. Erosion Classes 3
to 5 (large patches of missing coating, erosion of laminate and complete loss of laminate,
respectively), are associated with AEP reductions of 1–5% [5].

Material stresses arising during periods with a large number of hydrometeor impacts
on the blades at high closing velocities are thought to be the primary cause of LEE [6–9].
Accurate descriptions of the hydroclimate, including the precipitation frequency and
intensity, plus hydrometeor droplet size distribution (DSD) and phase and fall velocity
(vf), are thus critical to LEE estimation and to assessment of the potential benefits of
different LEE reduction/mitigation measures. Kinetic energy transfer to rotating blades
is highest under the joint occurrence of higher wind speeds and heavier rainfall rates.
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This is because of the non-linear dependence of blade rotational speed on wind speed.
Furthermore, impacts from large hydrometeors disproportionately contribute to material
stresses, due to their higher fall velocity (vf) and larger mass [9,10]. Higher rainfall rates
(RR, accumulation of water at ground level in a depth-per-time interval) are associated
with increased numbers of hydrometeors, mass-weighted mean hydrometeor diameters,
and fall velocities [9]. Thus, fidelity is especially important during periods of high RR and
high wind speeds. Impacts from hailstones may be particularly important to accumulated
material stresses, due to their hardness and large diameter [11,12]. The maximum stress
from the impact of a 10 mm hailstone on a WT blade has been shown to be much greater
than that from a similarly sized rain droplet with the same closing velocity [13]. As few
as five impacts from hailstones with 15–20 mm diameter at a closing velocity of 110 ms−1

caused damage to a glass fiber-reinforced plastic composite coated with polyurethane [14].
Efforts to reduce rates of LEE typically focus on measures to enhance dissipation of

the surface, shear and compressional waves generated by hydrometeor impacts. They
include application of erosion resistant coatings [15], shields [16] or tapes (typically made
of polyurethane and of thickness ~0.3 mm) [17,18]. The primary disadvantages of such
approaches are the cost, the potential for the measures to fail (e.g., tapes may become
detached or coatings degrade [19]) and/or that the associated modification of the airfoil
morphology may lead to aerodynamic performance degradation [20]. An alternative,
potentially complementary, approach is the adoption of dynamic wind farm control and,
specifically, the implementation of ‘erosion-safe mode’ operation. As the name implies,
wind turbine blade rotational speed is reduced during meteorological events that are likely
to cause high material stresses [21,22]. This curtailment reduces AEP. It may extend blade
lifetimes by reducing material stress, resulting in reduced operations and maintenance
costs and yielding net economic benefit to wind farm owner-operators via the reduction in
the levelized cost of energy (LCoE) [22].

A range of metrologies are available for detecting size-resolved hydrometeor num-
ber concentrations, and in some cases, hydrometeor phase and vf [9]. Ground-based
disdrometers generally adopt one of four measurement principles. Two-dimensional video-
disdrometers comprise two illumination sources and two video cameras with vertically
displaced, but perpendicular, lines of sight. Objects passing through the measurement
area obstruct the light and are detected as shadows by the cameras [23,24]. Impact dis-
drometers record the mechanical force applied when a hydrometeor impacts on the de-
tector [25,26]. Acoustic disdrometers detect the signal generated by hydrometeor impacts
on a diaphragm [27]. Optical disdrometers measure hydrometeors as they fall through,
and hence break, infrared beams [28]. Active remote sensing technologies, most notably
micro-rain radar, also have the potential to provide information about hydrometeor size
distributions, phase and vf via backscatter intensity and Doppler shift [29]. Prior research
has reported substantial differences in hydrometeor characteristics from these different
technologies [9,23,30–32]. The measured DSD also exhibit marked deviations from as-
sumed droplet size distributions used for leading-edge erosion experiments within the
wind energy industry [9].

Some discrepancies between RR and DSD derived using different disdrometer tech-
nologies are inevitable, due to differences in range of hydrometeor diameters detected
and/or differences due to the sampling height (in situ disdrometers vs. MRR). However,
not all discrepancies are easily attributable to such factors or consistent across studies. For
example, past research has found somewhat inconsistent results in comparisons between
video disdrometers and version 1 of the OTT Parsivel optical disdrometer considered
herein. One study found considerably higher RR from the video disdrometer versus that
version of the OTT optical disdrometer (Parsivel (Particle size and velocity), version 1) and
that difference in the associated DSD was amplified at higher RR [32]. A second found
consistently higher RR and hydrometer number counts from the optical disdrometer, but
higher concentrations of hydrometers with D > 4 mm from the video disdrometer [33].
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There is also a range of uncertainties associated with the disdrometer detection and
sizing of hydrometeors related to: (1) Under-sampling in high wind speeds [34–36]. (2) Con-
tamination from insects or debris in the sample volume [35,37]. (3) The small effective
field of view and the variation in sampling volume across disdrometers [33,35,38,39]. Of
equal or even greater importance are signal processing decisions. These include exclusion
of measurements where “droplets” of a given diameter are reported with vf that differ
substantially from theoretical estimates of the terminal fall velocity in stagnant air (vt).
While it is frequently assumed that vf = vt, this is not always realized. It is critical to
ensure that any thresholds used to identify anomalously high or low vf values are carefully
selected, because it has profound implications for the number of droplets in each diameter
class, N(Di) and hence the DSD:

N(Di) = ∑x
v=1

n(i, v)
Ftv f (i, v)∆Di

(1)

where n(i,v) = number count in diameter class i and velocity class v, F = area field of view
of the disdrometer, t = sampling interval, vf(i,v) = fall velocity, ∆Di = width of the size class.

A range of thresholds have been used in the literature to screen out disdrometer
signals that are erroneous. For example, in one analysis, ‘To improve data quality be-
yond what the manufacturer’s software provides, drops exceeding ±50% of their theo-
retical terminal fall speed (Beard 1976) were considered either secondary (i.e., a result
of splash) or mismatched drops and eliminated from the dataset, which resulted in an
elimination of 8% of the observations’ [32]. A different study excluded data for which∣∣∣v f (D)− vt(D)Beard

∣∣∣ ≤ 0.6vt(D)Beard [40]. The formulation of vt from Beard implies vt

scales with D over all values of D considered, and for D = 0.04 to 6 mm is given by [41]:

vt = v0(a + bX) (2)

where v0 is a constant specified as a function of D. v0 ranges from 4.7 cms−1 for D = 0.04 mm
to 914 cms−1 at D = 6 mm. a and b are functions of the elevation of the hydrometeor
(atmospheric density and temperature) and X is a function only of hydrometeor diameter.
For D = 0.1 mm vt at the ground for standard atmospheric conditions from Equation (2)
~ 0.2 ms−1, for D = 1 mm, vt ~ 3 ms−1, and for D = 6 mm, vt ~ 10 ms−1, which is slightly
higher than the approximation of Gunn and Kinzer [42] that is used herein. A further
analysis used

∣∣∣v f (D)− vt(D)Atlas

∣∣∣ ≤ 0.4vt(D)Atlas [43], to exclude erroneous data values.
The approximation of Atlas [44] is based on that of Gunn and Kinzer [42] and has the
simplified form for a standard atmosphere of:

vt = α1 − α2 exp(−6D) (3)

where D is specified in cm, α1 = 965, α2 = 1030, and these are given in cms−1.
A number of past studies have indicated that the second generation OTT Parsivel

optical disdrometer (Parsivel2) considered here may under-estimate D and v f (and thus
RR) relative to video disdrometers in conditions with very high RR and strong winds,
such as those associated with tropical cyclones [45,46]. The majority of the errors derived
from hydrometers with D > 5 mm were reported at unrealistically low vf (< 1 ms−1)
when hydrometers impinge upon the viewing area at an angle substantially off zenith.
The majority of these errors were reported at near-surface (10-m) wind speeds above
20 ms−1 [46].

A second major decision point in the analysis of disdrometer data relates to assump-
tions regarding the morphology of the hydrometeors. As liquid hydrometeors fall, drag
imposed by the air molecules leads the droplets to deform and to increasingly resemble
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oblate spheroids with an axis ratio (AR, vertical diameter (Dvert) over horizontal diameter
(DHoriz) of the hydrometeor) below 1:

AR =
DVert

DHoriz
(4)

To compute the mass or volume of the droplets, and to infer RR, an accurate assessment of
AR and its variation with diameter is thus needed [9]. The volume of a hydrometeor and
the mass (m) are given by:

V =
4
3

π

(
DHoriz

2

)2 Dvert

2
(5)

m = ρV = ρ
4
3

π

(
DHoriz

2

)2 Dvert

2
(6)

where ρ is the hydrometeor density.
RR is calculated from the number of hydrometeors (ni) of size class, i, intersecting the

sensor (of area F) during interval t and the equivalent diameter of hydrometeors of size
class i (Deq, the diameter of a sphere with equivalent volume to the oblate spheroid) [9]:

RR =
π

6
3.6
103

1
Ft ∑ niDeq,i

3 (7)

A range of empirical approximations of the axis ratio (AR) as a function of hydrometeor
diameter (and phase) have been advanced, including [47]:

AR = 1.03− 0.124
DHoriz

2
(8)

Uncertainty remains regarding the functional form of this relationship, and observed
droplet-to-droplet variation in AR is substantial [48].

There is widespread agreement on the need for improved understanding of the mech-
anisms of LEE and the value of a priori estimates of LEE for given locations in order to
properly assess the cost benefits of leading-edge protection or dynamic wind farm operation.
However, little attention has been paid to the necessity to make high-fidelity hydrometeor
droplet size distribution (DSD) measurements to inform such assessments [9]. Furthermore,
insufficient attention has been paid to the importance of disdrometer metrology and data
processing in dictating hydrometeor DSD and other properties (e.g., vf and AR) or the
implications for analyses of LEE potential and/or the efficacy of LEE preventative measures.

The goals of the current work are thus to:

1. Quantify and characterize differences in hydrometeor DSD due to disdrometer metrol-
ogy and illustrate the influence of those differences and key data processing decisions
on resulting hydrometeor size distributions and rainfall rates.

2. Estimate annual average kinetic energy transfer to blades from hydrometeor impacts
and quantify uncertainty due to disdrometer metrology.

3. Estimate wind turbine blade lifetimes using the Springer model [49] and quantify
uncertainty due to disdrometer metrology.

4. Evaluate the degree to which highly erosive events are concentrated in time and
attributable to the occurrence of hail.

5. Evaluate cost effectiveness of the erosion-safe mode, and the influence of disdrometer
metrology on the optical erosion-safe mode curtailment strategy.

2. Materials and Methods
2.1. Overview of Research Methodology

Data presented herein are drawn from the U.S. Department of Energy (DoE) Atmo-
spheric Radiation Measurement (ARM) site at Lamont, Oklahoma (36.6072◦ N,−97.4875◦ E).
This site is chosen for these analyses due to the availability of long-duration, high-quality
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hydrometeor observations from multiple disdrometers plus high-fidelity wind speeds at
wind turbine hub-heights from a Doppler lidar. Additionally, this region has high wind-
energy installed capacity and an extreme hydroclimate (including frequent occurrences of
deep convection and hail fall) [50,51].

Four years of concurrent wind speed and disdrometer data are derived using samples
collected at this location during 2017–2021. Use of a discontinuous time period is necessary
due to data gaps in the time series from all instruments. In the time series used here, all
three disdrometers and the lidar have simultaneous data availability, and each day of the
year is included exactly four times (i.e., there is no seasonal bias introduced by missing
data). Excluding individual minutes not available from all sensors yields an effective time
series duration of 3.98 years.

The research methodology employed here (Figure 1) begins by analyzing time se-
ries of observations from three co-located disdrometers (described in Section 2.2). Time
series of the resulting DSD, AR and vf are integrated with wind turbine tip-speeds de-
rived from remotely sensed wind speeds. Specifications from the WindPACT 3.0 MW
turbine [52] (Section 2.3) are used to compute accumulated kinetic energy transfer to
the blades (Section 2.4) and estimates of blade lifetimes are derived using the Springer
model [49,53,54] (Section 2.5). Results of those calculations are compared and contrasted
across the three disdrometers and used within a simple levelized cost of energy (LCoE)
model to assess the optimal use of the erosion-safe mode required to minimize LCoE
(Section 2.6).

2.2. Disdrometer Measurements

The optical disdrometer deployed at ARM is an OTT Parsivel2 [28,39]. It was de-
ployed in November 2016. Optical disdrometers, including the Parsivel2, have been widely
adopted due to their ease of operation and relatively low cost. The diameter and fall
velocity of a hydrometeor is determined by the width of the beam disrupted (blocked) by
its passage and the duration of time the blockage is recorded. Most research has suggested
that the version 2 of the OTT Parsivel disdrometer, which included updated laser technol-
ogy to ensure beam homogeneity and was issued in 2011, exhibits superior performance
to version 1 [28]. Fundamental assumptions employed in this technology include the
idea that only one particle is in the beam at any time and that a single axis ratio can be
assumed for a given diameter [23,28,38]. The former can lead to issues of undercounting of
highly numerous small hydrometeors. The latter assumption may lead to under-sampling
of the volume of larger droplets [23,28]. A further fundamental operational assumption
for optical disdrometers is that hydrometeors fall with their minor axis perpendicular
to the ground [38], which may not be true in high winds, affecting the accuracy of the
hydrometeor volume estimates [45].

The OTT Parsivel2 disdrometer reports hydrometeor counts in 32 classes, up to
D = 24 mm. Within each size class, it also reports vf in 32 classes from 0.05 to 20.8 ms−1.
The presence of solid hydrometeors as estimated based on vf and D [46,55] is reported
using WMO 4678 weather codes (88 for soft hail and 89 for hail). Data used in the following
calculations are thus 32 by 32 matrices of number counts (in D and vf space) along with a
WC flag for each 1 min period.

Use of an envelope of permitted vf as a function of D to exclude hydrometeors
that are falling at velocities that may indicate signal contamination by splash or non-
precipitation objects, has a crucial influence on the resulting DSD and RR, as illustrated
by Equations (1) and (7). There, we follow DoE ARM quality control procedures [39]. Hy-
drometeor counts from this instrument are excluded from the analysis if they are reported
in a vf class that falls outside of a ±50% envelope from the empirical observations of vt as a
function of D presented by Gunn and Kinzer [42], (referred to herein as G and K +/− 50%;
see Figure 2a). It is worthy of note that use of this ±50% envelope equates to a range of
approximately 4.5 to 13.6 ms−1 for D = 5 mm, and thus includes modeled vt estimates
for standard atmospheric conditions for solid spherical droplets and oblate spheres [56].
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However, vt from Gunn and Kinzer [42] asymptotes to a constant value at smaller D than
is indicated by some models [56]. Use of this data screening leads to removal of 28.9% of
recorded hydrometeors (Figure 3a–c). Using a threshold of permitted vf of within +/− 60%
of vt excludes 23.9% (Figure 3d–f) of recorded hydrometeors, similar to the 25% reported
by Jaffrain and Berne [40]. Rejected hydrometeors are concentrated at D < 1 mm and
exhibit vf < vt (i.e., many have vf ~1 ms−1). Possible causes of the large number of rejected
hydrometeors when using the DoE ARM standard analysis procedure include the very high
wind speed regimes at the DoE ARM site which causes the falling hydrometeors to exhibit
non-negligible translational speeds [36,57]. Snow is relatively rare in the SGP. Snowflakes
will tend to fall at considerably slower rates than droplets, and may be excluded by this
data screening, but will tend to have little consequence for LEE due to their low mass
and vf.
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To compute the effective diameter of each hydrometeor for use in determining the
kinetic energy transfer, we follow the procedure used within the OTT Parsivel2 software
that is used to derive RR from the DSD [9]. Hence, AR is set as 1 for D < 1 mm, varies
linearly from 1 to 0.7 for D = 1 to 5 mm, and is fixed at 0.7 for D > 5 mm (Figure 2b).

The impact disdrometer operated at the Lamont site since February 2006 is a Joss-
Waldvogel type [26,58–60] manufactured by Distromet Ltd. Impact disdrometers inherently
assume that the hydrometeors are falling at vt, so that their terminal fall velocities are
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used to derive the number concentrations by diameter. This type of disdrometer has been
reported to measure droplets with D = 0.3 to 5.5 mm with a±5% accuracy [26]. Background
noise can induce measurement error, and there is the potential for under-sampling during
very high RR, due to the ‘dead time’ of the instrument due to ringing in the cone after each
impact. A channel correction is applied that scales with reported impacts at other D [60].

Here we assume vf for hydrometeors recorded by the impact disdrometer to be equal
to the Gunn and Kinzer estimates for each of the 20 diameter classes (extending to 5.4 mm)
reported by the impact disdrometer. Following DoE ARM data processing procedures [61],
the diameters at which data are reported are assumed to represent the effective spherical
diameter, and thus AR = 1.

Two-dimensional video disdrometers use two perpendicular high-speed cameras
and two light sources to track hydrometeors as they fall through the viewing area, to
record their shape, D and vf. The video disdrometer was manufactured by Joanneum
Research Digital [48] and deployed at the Lamont site in February 2011 [62]. This 2D video
instrument records droplet size distributions in 50 evenly sized diameter classes up to
9.9 mm [63]. It can directly detect vf for each hydrometer by the difference in detection
time from the two vertically offset (~6–7 mm) cameras [23]. However, for processing
speed in the following, vf is specified by D by the G and K curve, following the same
approximation as used for the impact disdrometer. Some previous research has suggested
that hydrometeors with D < 0.2 mm are subject to relatively large measurement uncertainty
in video disdrometers [25], and that measurement uncertainty increases with increasing
wind speed. However, in general, the video disdrometer is seen as a reference disdrometer
and exhibits good closure in terms of RR and accumulated precipitation relative to tipping-
bucket and weighing rain gauges [23]. Uniquely among the disdrometers considered here,
this instrument can detect and report not only D, but also AR. Analyses of four years of
individual hydrometeor AR from the video disdrometer indicate reasonable agreement
with both assumptions made in the optical disdrometer and the approximation shown
in Equation (5), in terms of the dependence on D. However, the data from the video
disdrometer and Equation (5) suggest larger droplets are substantially more oblate than
is currently being assumed in the optical disdrometer software (Figure 2b). In following
analyses of the video disdrometer output, based on analysis of 4 years of 1 min individual
hydrometeor observations (Figure 2b), the axis ratio is assumed to have the following
dependence on the hydrometeor horizontal diameter, DHoriz:

AR =

{
−0.0817DHoriz + 0.987, f or DHoriz < 10 mm

0.17, f or DHoriz ≥ 10 mm
(9)

Earlier work [43] using an artificial rain shaft under very low wind conditions found
the following mean axis ratios from a 2D video disdrometer: 0.98 (DHoriz = 1–1.5 mm),
0.911 (DHoriz = 2–2.5 mm), 0.844 (DHoriz = 3–3.5 mm), 0.771 (DHoriz = 4–4.5 mm), 0.704
(DHoriz = 5–5.5 mm), 0.645 (DHoriz = 6–6.5 mm), 0.589 (DHoriz = 7–7.5 mm), 0.520
(DHoriz = 8–8.5 mm), and 0.446 (DHoriz = 9–9.5 mm). For DHoriz > 4 mm, those values are
substantially higher than the linear fit estimates presented in Figure 2b, but are also sub-
stantially lower than the assumptions made the in OTT Parsivel2 software. The precise
source of the discrepancy between earlier studies and work presented here is currently not
known, but may reflect differences in wind regimes. The relatively infrequent occurrence
of hydrometeors with D > 4 mm means it is likely a small, but non-negligible, source of
uncertainty in the current analyses.

2.3. Lidar Wind Speeds and Wind Turbine Power and RPM Curve

The 15 min mean wind speeds at 90 m a.g.l. from a Doppler lidar are used herein to
represent hub-height winds (U) [64] (Figure 4a). They are used with the WindPACT 3.0 MW
turbine power and RPM curves (Figure 4a) [52] to generate 1 min values of wind turbine
tip speed and power production for use in the damage and LCoE modeling. This wind
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turbine was selected as typical of those deployed in 2021 in the U.S. onshore market, when
the mean rated capacity of newly installed wind turbines in the U.S. grew to 3.0 MW [65].
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Figure 4. (a) Probability distribution of hub-height wind speeds (U at 90-m AGL) from the Doppler
lidar measurements. Overlain are the power production (in MW) and rotor rotational speed (in
rotations per minute, RPM) as a function of U for the WINDPACT 3-MW turbine (right axis). (b) Prob-
ability distributions of 1 min rainfall rates (RR) from the three disdrometers. (c) Annualized joint
probabilities of U and RR from the optical disdrometer.
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The precis of 1 min rainfall rates (Figure 4b) and joint occurrence of rainfall rate and
wind speed (Figure 4c) based on data from the DoE ARM site emphasizes that a typical
wind turbine deployed in this region would frequently be at or near the rated rotor speed
(i.e., hub-height winds (U) > 11 ms−1; Figure 4a) when precipitation is occurring. It further
re-emphasizes that, although precipitation is relatively infrequent in the SGP [9], high-
intensity precipitation (RR > 2.5 mmh−1) is frequently observed, including during periods
when the wind turbine blades are rotating rapidly (Figure 4c).

2.4. Kinetic Energy of Impacts

A simple geometric model is used to estimate the kinetic energy of hydrometeor—
blade impacts based on the hydrometeor mass, fall velocity, and blade velocity (and thus,
swept volume per square meter of leading-edge area) in each 1 min period. Closing velocity,
vc as a function of diameter (D) and fall velocity (vf) is calculated from hub-height wind
speed, U, blade tip speed, vblade (calculated from U via the RPM curve, Figure 4a), and
blade position, φ(t) at time, t. The blade tip speed represents speeds in the blade area with
the greatest potential for erosion [13]. The following method is derived from an analysis of
the WT blade-hydrometeor closing velocities from [66]:

vc

(
D, v f , t

)
=

[
U2 +

(
vblade + v f · cos(φ(t))

)2
]1/2

(10)

The impact rate (I, in impacts m−2) on the blade leading edge is calculated from the number
density of the hydrometeors of a given diameter and closing velocity (N(D, vc)), and the
closing velocity itself:

I(D, vc, t) = N(D, vc)·vc

(
D, v f , t

)
(11)

This impact rate assumes that no hydrometeors are deflected out of the swept volume
of the blade. Previous work has shown that only droplets with D < 0.2 mm have low
enough inertia to be deflected from the blade by streamline deformation [67]. The KE of
hydrometeor impacts is given by:

KE(D, vc, t) =
1
2

m(D)·vc

(
D, v f , t

)2
(12)

where m(D) is the mass of the hydrometeors as a function of effective diameter, computed
from the measured horizontal diameter, taking into account an appropriate axis ratio
(AR = 1 for the impact disdrometer, between 1 and 0.7 for the optical disdrometer, and 0.9
and 0.2 for the video disdrometer (Figure 2b)). Kinetic energy is then integrated over the 1
min period, assuming that all blade positions, φ, are equally likely, to derive the total kinetic
energy for each minute of precipitation integrated over all diameter classes, and summed
over all time intervals (t) to compute the total accumulated kinetic energy of impact. For
legibility, in the following we use KE to refer to the total accumulated KE of impact (KEtot):

KEtot = ∑t ∑D ∑Vc
I(D, vc, t)KE(D, vc, t) (13)

2.5. Modeling the Blade Lifetimes

A range of modeling techniques has been advanced to simulate the process of material
stresses that lead to blade leading-edge erosion [67–69]. Herein, we use the Springer
model [49,54] combined with Miner’s rule. The Springer model uses material properties
of the blade and coating and the hydrometeor impact number, diameter, velocity and
impact angle to estimate a distance to failure for each hydrometeor diameter. This distance
to failure is the end of the incubation period for coating wear. Miner’s rule is used to
integrate across all hydrometeor diameters, to quantify the accumulated distance to failure
(ADF) [17,53].



Energies 2023, 16, 3906 11 of 29

A brief description of the implementation of the Springer model for coated WT blades
is given below, and more details can be found in previous publications [17,53]. The number
of impacts to failure per unit area, Ni, for a given droplet diameter D and impact velocity v
(which is assumed to be the closing velocity) is given by:

Ni =
4π

D2 a1

(
Sec

σ0

)a2

(14)

where Sec (Equation (19)) is the erosion strength of the blade coating and σ0 is the average
stress of the coating surface, given by:

σ0 = v
ZL cos(θ)(ψsc + 1)(
ZL
Zc

+ 1
)
(1− ψscψLc)

(
1− (1− eγ)(ψLc + 1)ψsc

γ(ψsc + 1)

)
(15)

where Z (Z = ρC) is the impedance of each material (subscripts: L for liquid, c for
coating, s for substrate), C is the elastic wave speed, ρ is the material density and ψ
is the relative acoustic impedance (subscripts sc for substrate-coating, and Lc liquid-
coating (Equations (16) and (17)), and γ is the coating thickness parameter, representing
the maximum number of reflections during the impact time within the coating thickness
(Equation (18)):

ψsc =
Zs − Zc

Zs + Zc
(16)

ψLc =
ZL − Zc

ZL + Zc
(17)

γ =
2CcZc(ZL + ZS)D

Cl(Zc + ZL)(Zc + ZS)
(18)

Sec ∼=
4(bc − 1)σUc

(1− 2νc)

(
1−

(
σIc
σUc

)bc−1
)
(2k|ψsc|+ 1)

(19)

where σuc is the ultimate tensile strength of the coating, bc is the coating Springer fatigue
knee (calculated from the material fatigue knee, b2c, in Equation (20)), νc is the coating
Poisson ratio, and k is an average number of impacts based on γ (Equation (21)):

bc =
b2c

log10

(
σUc
σIc

) (20)

k =
1− e−γ

1− ψscψLc
(21)

A range of parameter values have been proposed for use in the Springer model [53].
Because the focus of this research is not, per se, to derive accurate blade lifetime estimates,
but to illustrate differences that arise due to disdrometer metrology, here we use relatively
conservative values drawn from two previous studies [17,53] (Table 1).

Table 1. Springer Model Parameters Used.

Variable Symbol Value Unit Source

Coating Poisson ratio νc 0.295 - [17]
Coating density ρc 1690 kg m−3 [17]

Coating ultimate tensile strength σUc 1.30 × 107 Pa [17]
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Table 1. Cont.

Variable Symbol Value Unit Source

Coating endurance limit σIc 6.30 × 106 Pa [17]
Coating fatigue knee b2c 16.52 - [17]

Substrate density ρs 1930 kg m−3 [17]
Liquid density ρl 997 kg m−3 [53]

Liquid acoustic velocity Cl 1481 ms−1 [53]
Impact angle θ 0 Degrees [53]

Coating thickness h 750 × 10−6 m [53]
Springer Constant a1 a1 7 × 10−6 - [53]
Springer Constant a2 a2 5.7 - [53]

Coating acoustic velocity Cc 1730 m s−1 [17]
Substrate acoustic velocity Cs 2390 m s−1 [17]

2.6. Modeling the Impact of Erosion-Safe Mode on LCoE

Estimates of the influence on the LCoE of implementation of wind turbine curtailment
during highly erosive events are derived using:

LCoE =
∑i

n=1(CAPEXn + O&Mn)/(1 + r)n

∑i
n=1 AEP/(1 + r)n (22)

along with the following assumptions:

• Capital expenditures (CAPEX) for a 3 MW wind turbine = USD 4,386,000 and occur
only in year 1 (n = 1). This value is based on capital expenditure of 1462 per kW for a
land-based reference project using 2.8 MW wind turbines, used in the recent analysis
of 2020 review of the costs of wind energy [70]. It is at the higher end of global mean
values in 2020, which ranged from 1050 to 1450 USD/kW [71].

• Fixed annual Operations and Maintenance (O&M) costs for a 3 MW wind turbine = USD
129,000. This value is based on O&M costs of 43 USD/kW/yr for a land-based refer-
ence project using 2.8 MW wind turbines, used in the recent analysis of the 2020 review
of the costs of wind energy [70]. It assumed that these O&M costs do not include those
associated with blade failure and replacement. The rate of 43 USD/KW/yr is at the
mid-point of estimates (33–59 USD/kW/yr) for recently commissioned projects in a
survey of US industry professionals performed in 2018–2019 [72].

• Annual discount rate (r) = 0.0523. This rate is used as a reference rate in the 2020
review of the costs of wind energy [70].

• The wind turbine lifetime is 25 years (i.e., i = 25). This project lifetime is used as a
reference in the 2020 review of the costs of wind energy [70], and is consistent with
expected lifetimes for many projects operating in the US. It is longer than the estimate
of 20 years used in an analysis of lifetime extension of onshore wind turbines in
Europe [73], but shorter than the 29.6 years derived from a recent survey of US wind
industry professionals [74].

Once the accumulated distance to failure (summed over all hydrometeor diameters)
has been reached in the Springer model calculations, we assume:

• The damage is sufficient to merit total blade replacement, and the additional O&M
expenditures for replacement of a blade = USD 200,000 [75] occur in that year.

• Replacement of blades leads to 7 days of lost annual energy production (AEP). This is
based on the information that most repairs take 1–3 days [75] and crews and specialist
equipment may not be immediately available and/or prevailing meteorological condi-
tions may limit turbine access. The reduction of AEP in the year when the replacement
is modeled to occur is taken as 1/52 of total AEP.

In environments where relatively few events dominate the accumulated kinetic energy
transfer to the blades and the increments in ADF, it may be desirable to enact erosion-safe
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mode and curtail production (and blade rotation) during those periods. Thus, we assess
the degree to which curtailment of the wind turbine during such events in the US SGP can
extend blade lifetime and what the influence is on LCoE of varying rates of curtailment.
To evaluate the optimal duration of the operational safe mode needed to extend blade
lifetimes and lead to minimization of the LCoE the following procedure is employed. For
each time series from the three disdrometers, we incrementally remove 1 min or 10 min
periods with the highest increment in ADF, and consider a range of zero curtailments to
0.5% of all 1 or 10 min periods, in increments of 0.01%. The use of the two integration time
periods for these analyses is a recognition that although highly erosive periods are very
short-lived, dynamic operation may more likely be implemented at a 10 min time scale.

3. Results
3.1. Rainfall Rates and Hydrometeor Size Distributions

Prior to using the time series of number counts in D, vf classes from each of the disdrom-
eters to derive kinetic energy transfer and blade lifetime estimates, below we compare the
derived DSD and inferred RR and interrogate possible causes of measurement differences.

Analyses of data from the optical disdrometer systematically lead to lower RR than
those from either the impact or video disdrometer (Figure 5a,c). RR from the video disdrom-
eter also tend to exceed those from the impact disdrometer (Figure 5b). The negative bias
in estimated RR from the optical disdrometer relative to the video disdrometer is consistent
with results from the DEVEX experiment in Iowa City [33], but the findings relative to a
Joss-Waldvogel impact disdrometer are contrary to those from a study in Alabama [28].
Because of the critical importance of periods with high RR and wind speeds to kinetic
energy transfer to wind turbine blades, in Figure 5 we conditionally sample the derived RR
from each disdrometer by prevailing hub-height wind speed. Any dependence of the bias
in RR on wind speed has important ramifications for uncertainty in the estimated impact
of KE. While the offset between RR from the video and impact disdrometers is consistent
across all wind speed classes (Figure 5b), the highest agreement for RR from the optical
disdrometer relative to the other two is achieved at wind speeds associated with the highest
rotor rotational speeds (i.e., U: 11–24 ms−1) (Figure 5a,c). Incorrect counting (possibly
overestimation) of medium and large droplets (D > 2 mm) by Parsivel disdrometers during
high wind speeds [34–36], may be partly compensated for by large D with erroneously low
vf being filtered by the quality assurance algorithm.
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Figure 5. Scatterplots of 1 min RR from the three disdrometers conditionally sampled by hub-
height wind speeds (U). (a) Optical versus impact disdrometer. (b) Impact versus video disdrometer.
(c) Optical versus video disdrometer. Also shown are least-squares linear fits to each sub-set of RR
conditioned on U.

Comparisons of mean hydrometeor size distributions conditionally sampled by rainfall
rate (Figure 6) indicate three important features of the data: (i) Number concentrations
for the smallest hydrometers (D < 1 mm) are substantially higher in data from the video
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disdrometer (cf. Figure 6a–c). These differences are especially pronounced at the highest
RR. Undercounting by the impact disdrometer at high RR may be due to the ‘dead time’
in heavy rain, when smaller impacts are not logged, as two or more hydrometeors impact
the disdrometer in a short interval. Alternatively, undercounting may be due to ambient
noise (from the wind or generator) [26]. Undercounting of small hydrometeors by the
optical disdrometer at high RR may be due to the assumption that only one hydrometeor is
interrupting the beam at any time [23,28]. It may also be due to the vf data filter applied [40].
(ii) Hydrometeors with D ~ 4–5 mm are substantially more abundant in data from the
optical disdrometer at all RR. Note the DSDs are limited by the maximum D observable
with each disdrometer.
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Figure 6. Mean droplet size distributions (DSDs) from the (a) optical, (b) impact and (c) video
disdrometers in four rainfall rate (RR) classes. DSDs are conditionally sampled on RR from the
respective disdrometer, but the classes are centered on the 90th percentile 1 min RR from the optical
disdrometer (RR ~ 4 mmh−1) and the 95th, 99th and 99.9th percentile RR (~3, 8, 30 and 75 mmh−1,
respectively), from the optical disdrometer.

3.2. Impact Kinetic Energies

Although data from the three disdrometers are generally consistent in terms of detec-
tion of precipitation, the number of one-minute periods with non-zero KE is not identical
among the three data sets (Table 2). The optical disdrometer reports ~ 22% fewer periods
with RR (and hence KE) > 0 than the video disdrometer. However, the estimated annualized
impact of KE, computed using data from the optical disdrometer with the data selection
criterion applied meaning that vf must lie within ±50% of vt from Gunn and Kinzer [42],
and using the AR assumptions described in Section 2.2, greatly exceeds estimates from
the impact and video disdrometers. Indeed, it is a factor of 1.61 times that of the impact
disdrometer, and a factor of 1.26 higher than estimates based on data from the video dis-
drometer (Table 2). Thus, consistent with the mean DSD shown in Figure 6, the greater
prevalence of hydrometeors with D > 2 mm in the optical disdrometer data stream yields
notably higher KE estimates. A further contributory factor to the higher KE computed based
on data from the optical disdrometer is that among periods with nonzero precipitation
logged by the optical disdrometer, 24.1% have wind speed at or above the rated speed
(Figure 4a, i.e., U: 11 to 24.5 ms−1), compared with 17.1% for the impact disdrometer and
18.0% for the video disdrometer (Table 2). This implies that periods for which the optical
disdrometer does not detect precipitation (and one or both of the other instruments do),
tend to be those with lower U. These periods make only a small contribution to total KE,
due to low rotor speeds.
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Table 2. Annualized KE of impact (total KE), minutes with KE > 0, fraction of precipitation minutes
at rated wind speed (i.e., U: 11 to 24.5 ms−1, fraction of minutes at rated U), and estimated blade
coating lifetime from the Springer Model, based on analyses of data from the three disdrometers:
Optical, Impact and Video. Results are also shown for analysis of data from the optical disdrometer
for a WC of 88 or 89 (hail periods). The final column shows results for the optical disdrometer when
the permitted range of vf is expanded to lie within ±60% of vt from Gunn and Kinzer [42] (Figure 3d).

Optical Impact Video Hail Periods
(Optical)

Optical
(±60% Filter)

Total KE [J m−2] 6.66 × 107 4.14 × 107 5.28 × 107 6.33 × 106 7.63 × 107

Minutes with KE > 0 90,067 114,815 115,499 1331 90,067
Fraction of Minutes at Rated U 0.241 0.171 0.180 0.502 0.241

Estimated Lifetime from Springer
Model [years] 15.7 27.2 17.5 13.8

When the envelope of permitted vf is expanded to include values within ±60% of vt
from Gunn and Kinzer [42], the annualized total KE from impacts computed using data
from the optical disdrometer increases by almost 15% (Table 2). Thus, the exact choice of
vf filter has a substantial effect on the resulting DSD and KE of impact (Figure 3, Table 2).
When no filter is applied to remove counts with very high or low vf, the annualized impact
KE is much higher (7.31 × 108 J m−2), due to the strong dependence of the derived number
concentrations on counts with very low vf (see Equation (1)).

Impact KE is dominated by periods with closing (and hence impact) velocities near
80 ms−1 and D < 5 mm (Figure 7a–c). Thus, at this location, damaging events are con-
centrated at times when the blade is rotating at its maximum speed. However, as D (and
vf) increase, the range of impact speeds contributing substantially to KE increases. This
implies that hydrometers with D > 2 mm have sufficient vf (and mass) so that even when
U < 11 ms−1, the kinetic energy of impact remains high. The largest hydrometeors reported
by the optical and video disdrometers make only a relatively modest contribution to the
KE of impact (Figure 7a–c). Thus, the differences between the disdrometers in terms of the
range of observed D are likely to make only a fairly minor contribution to differences in
KE. KE contributions from hydrometeors with 4 mm < D < 7 mm are notably higher for the
optical disdrometer than for the video disdrometer, which also reports hydrometeors in
this diameter range.

When the 1 min KE estimates and RR are conditionally sampled to include only periods
when the blade would be rotating at the maximum speed (i.e., when U: 11.5–24 ms−1),
analyses of data from all three disdrometers indicate a relatively consistent relationship
between KE and RR, but also pronounced scatter (Figure 7g–i). This scatter illustrates the
value in using high temporal resolution disdrometer DSD measurements to compute KE of
impacts and resulting blade damage, rather than relying on a weighing or tipping-bucket
rain gauge that reports only total accumulated precipitation.

Data analyses based on all three disdrometers indicate that periods with high-impact
KE are highly concentrated in time and are most likely in the warm season months
(Figure 7d–f), when deep convection and both very heavy precipitation and hail are most
frequent in the SGP [51]. The 1 min impact KE is <1000 J m−2 for all but the most intense
2000 to 4000 min (~50 h) per year (Figure 8a,b). Estimates based on impact disdrometer
observations show the greatest concentration of KE in time, with 50% of KE concentrated in
387 min per year. Comparable estimates are 788 min, based on analyses of DSD from the
optical disdrometer and 608 min for the video disdrometer (Figure 8c). The heavy-tailed
nature of the probability distributions of KE provides a strong motivation for the later
assessment of the erosion-safe mode operation.



Energies 2023, 16, 3906 16 of 29
Energies 2023, 16, x FOR PEER REVIEW 16 of 30 
 

 

 
Figure 7. (a–c) Annualized kinetic energy of impacts sampled by hydrometer diameter (D) and im-
pact velocity (vc) from the (a) optical (b) impact and (c) video disdrometers. (d–f) Time series of 1 
min KE from the (d) optical, (e) impact and (f) video disdrometers. (g–i) Scatterplots of 1 min KE vs. 
RR for all periods when 11.5 ms−1 < U < 24 ms−1 (i.e., the blades were operating at maximum rota-
tional speed, see Figure 4a) for data from the (g) optical, (h) impact and (i) video disdrometers. 

 
Figure 8. (a) Probability distributions of 1 min KE for all precipitation and for hail only (WC 88 or 
89), based on data from the optical disdrometer. (b) Duration curves of 1 min KE, based on analysis 

Figure 7. (a–c) Annualized kinetic energy of impacts sampled by hydrometer diameter (D) and
impact velocity (vc) from the (a) optical (b) impact and (c) video disdrometers. (d–f) Time series of
1 min KE from the (d) optical, (e) impact and (f) video disdrometers. (g–i) Scatterplots of 1 min KE
vs. RR for all periods when 11.5 ms−1 < U < 24 ms−1 (i.e., the blades were operating at maximum
rotational speed, see Figure 4a) for data from the (g) optical, (h) impact and (i) video disdrometers.

The KE of impact within individual 1 min periods also varies based on analyses of data
from the three disdrometers (Figure 9). When comparing the 1 min KE from concurrent
periods, there is often good agreement between the optical and impact disdrometers (with
KE based on data from the optical disdrometer being somewhat higher). However, there
are some periods where the KE estimate from one instrument is near to zero and the
other is large (Figure 9a). For the highest KE of impacts, values estimated from the video
disdrometer data tend to be higher than those from the optical disdrometer (Figure 9b).
Pairwise comparison of one-minute KE values indicates that only 39% of values from the
impact disdrometer are within ±20% of those from the optical disdrometer. KE values
from the video disdrometer are within ±20% of those of the optical disdrometer in 41% of
minutes. Conditionally sampling the data to include only minutes with KE from the optical
disdrometer > 10,000 J m−2, the degree of agreement between the values from the impact
and optical disdrometer increases, but not between KE estimates from the optical and video
disdrometer. When KE from the optical disdrometer data > 10,000 J m−2, 59% of KE values
from the impact disdrometer data lie within ±20% of those from the optical disdrometer,
but only 25% of values from the video disdrometer time series do.
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Figure 8. (a) Probability distributions of 1 min KE for all precipitation and for hail only (WC 88 or 89),
based on data from the optical disdrometer. (b) Duration curves of 1 min KE, based on analysis of data
from the optical, impact and video disdrometers and hail from the optical disdrometer. (c) Fraction of
total KE contained in the top N minutes per year for all periods from the optical, impact and video
disdrometers and for hail or soft-hail periods from the optical disdrometer. Note that hail curves
correspond to the upper horizontal axis in panels (b,c).
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Past research has indicated that materials stresses induced by hail impacts on the
blade may be amplified relative to rain droplets, due to the larger mass and diameter of hail
and the relative hardness of the hydrometeor. Data from the optical disdrometer indicate
hail periods are associated with more intense precipitation overall than non-hail periods.
Hail is also associated with a higher number of concentrations of hydrometeors across
all diameters and a much greater frequency of large hydrometeors (Figure 10b). Soft hail
periods are associated with lower-intensity precipitation and small diameter hydrometeors
(Figure 10c). While this is, naturally, in part a product of the proprietary algorithm used to
assign the WC, it is also consistent with the meteorological literature [76]. Kinetic energy
contributions from hail have a local maximum at D ~ 6 mm, whereas KE contributions
for other periods are mostly restricted to D < 4 mm (Figure 10 d–f). While the peak KE of
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impact periods are associated with rain, many of the highest kinetic energy minutes are
associated with the presence of hail (Figures 10 and 11). KE values associated with hail
events are even heavier tailed than those associated with rain. A total of 0.5% of minutes
with hail are associated with KE of impact > 50,000 J m−2 (Figure 8) and 90% of the KE
contribution from hail comes in < 50 min per year (Figure 8c).
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Figure 11. Time series of 1 min KE based on analyses of data from the optical disdrometer with hail
occurrences circled in red and soft hail in blue.

As described above, although the RR is correlated with KE of impacts, there is substan-
tial minute-to-minute variability in the relationship, due to variations in the precise DSD.
This is demonstrated below, using the variability in the median volume diameter (MVD)
of the hydrometeors, which is the diameter that half of all hydrometers measured during
that 1 min period exceed. MVDs from all three disdrometers are most frequently < 3 mm,
with the periods of highest KE typically being associated with MVD near 2 or 3 mm
(Figure 12a–c). Analysis of data from the optical disdrometer indicate some high KE pe-
riods associated with much larger MVD (10–22 mm), which correspond to periods with
large hail. These diameters are not sampled by the other two disdrometers.
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Also shown in frames (d–f) are least-squares linear fits.

An a priori expectation can be advanced that, for a given blade rotational speed, the
hydrometeor volume (volume fraction occupied by water) should be strongly associated
with KE, since it is directly proportional to the mass of hydrometeors impacting the blade.
KE totals can be explained by the blade tip speed, Vhyd, hydrometeor density (m3/m3 of
air), and the swept volume of the blade tip (VSwept in m3min−1m−2):

VSwept = vblade∆t (23)

The total mass of hydrometeors encountered by the blade in one minute (mimp in kg min−1)
can be derived for a given hydrometeor density (ρ) using:

mimp = VSwept·Vhyd·ρ (24)

and the total 1 min KE can be estimated by:

KE ∼=
1
2

mimpvblade
2 =

1
2

∆t·Vhyd·ρ·vblade
3 (25)

For vblade = 80 ms−1, ρ = 1000 kgm−3, ∆t = 60 s:

KE
Vhyd

∼= 1.54× 1010 J m−2min−1 (26)
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This expectation of a strong correlation between Vhyd and the KE is observed in the analysis
output (Figure 12d–f). Indeed, for U = 11.5–24 ms−1, the linear correlation coefficient
between Vhyd and KE ≥ 0.999. The slope of the linear fits of KE and total hydrometeor
volume range from 1.51 × 1010 to 1.53 × 1010 (with negligible y-intercepts), consistent with
expectations from Equation (26).

3.3. Blade Lifetimes from the Springer Model

The Springer model is designed to represent the ADF (i.e., the end of the damage
incubation period), and thus to provide an estimate of the coating lifetime. Using the
conservative values for the model coefficients described in Table 1, analysis of data from
the optical, impact and video disdrometers indicate the end of the incubation period at
between 15 and 27 years (Table 2). Analysis of data from the optical disdrometer yields the
shortest time to coating failure (15 years), while the estimate from the video disdrometer is
almost 2 years longer, and that based on data from the impact disdrometer is over 11 years
longer. The inference is that the type of disdrometer deployed to make a priori estimates
of the potential for LEE would have a profound impact on estimates of lifetimes and the
cost-effectiveness of deploying preventative measures, such as reinforcing the leading edge.

Even more pronounced is the impact of the data screening procedure to exclude
hydrometeors with very low and very high vf. Screening of the data from the optical
disdrometer to exclude signals that may not be associated with hydrometeors (i.e., use of
vt-vf, filters) also has a profound influence on estimated blade lifetimes. Use of the DoE
ARM best practice for quality assurance of the optical disdrometer data (i.e., that vf must
lie within ±50% of vt) yields an estimated blade lifetime of 15.7 years (Table 2). Use of an
expanded range of acceptable values, i.e., vf must lie within ±60% of vt, lowers the lifetime
to 13.8 years, while inclusion of all droplets reported by the Parsivel2 optical disdrometer
in the ADF from the Springer model yields a blade lifetime of 1.9 years.

As expected, there is a strong and consistent relationship between 1 min estimates
of impact KE and accumulated distance to failure (aggregated across all hydrometeor
diameters). Based on analyses presented herein, on average, a 1 J m−2 increment in KE
corresponds to a 3.8 × 10−9 to 5.0 × 10−9 increment in distance to failure integrated over
all diameters (DF; Figure 13a–c and Table 3, mean ratios and slopes). However, individual
1 min periods deviate markedly from this expectation, due to variations in the precise
DSD and vf. Examining only periods when the KE > 2.5 × 105 J m−2 and dividing DF
values into those where DF < 80% of the expectation and all other DF values, indicates that
periods when ADF is below expectations are typically associated with a greater proportion
of large-diameter hydrometers (Figure 13d–f).

Table 3. Relationships between KE of impacts and DF from the Springer model: slope and intercept
of a least-squares linear fit (Figure 13a–c). Also shown are the Pearson linear correlation coefficient
(r), the ratio of the mean 1 min DF and KE, and the number of 1 min events in Classes 1 and 2 (Class 2
is comprised of all events with KE > 2.5 × 105 J m−2 and DF < 80% of the linear fit DF value for their
KE. Class 1 is all other events with KE > 2.5 × 105 J m−2).

Slope Intercept Pearson r Mean (DF)/Mean (KE) N (Class 1) N (Class 2)

Optical 4.04 × 10−9 −7.34 × 10−9 0.955 3.81 × 10−9 200 29
Impact 3.91 × 10−9 −7.35 × 10−9 0.960 3.54 × 10−9 152 23
Video 5.05× 10−9 −18.6 × 10−9 0.962 4.32 × 10−9 155 23

Accumulated distance to failure (ADF) and accumulated kinetic energy (AKE) exhibit
similar time histories (Figure 13g,h). Both also illustrate the extremely episodic nature of
highly erosive events. Based on analysis of data from the optical disdrometer, a single
six-day period (20–25 May 2019) contributed 6.74% of the 4-year ADF and 6.31% of AKE.
This period was characterized by two major convective outbreaks, each of which contained
multiple 1 min periods with RR > 100 mmh−1 and a high prevalence of U between 11.5
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and 24 ms−1, when the blade rotational speed is maximized. The presence of such periods
within the data record emphasizes both the importance of long records in characterizing
the hydroclimate and the erosion potential of a given location and the potential benefit of
erosion-safe mode operation. The time series of ADF and AKE show analyses of data from
the impact disdrometer result in systematically lower damage estimates than for the other
two disdrometers. Estimates of ADF and AKE from the video disdrometer are also generally
lower than those from the optical disdrometer. However, individual events (including
one during the 20–25 May 2019 period) made a substantially higher contribution to ADF
from the video disdrometer than is evident in analyses based on the optical disdrometer
(Figure 13h). Accordingly, the relative ranking of ADF from these two instruments varies
through time (Figure 13h).
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Figure 13. (a–c) Scatterplots of the distance to failure (DF based on the Springer model) versus KE
of hydrometeor impacts for each 1 min period based on data from the (a) optical, (b) impact and
(c) video disdrometers. The black, dashed line is a linear least-squares fit for all data plotted (fit
parameters given in Table 3). Two classes are defined for comparison: Class 2 (red) is comprised
of all events with KE > 2.5 × 105 J m−2 and DF < 80% of the expectation, based on the linear fit
of DF to KE. Class 1 (black) is all other events with KE > 2.5 × 105 J m−2. (d–f) Mean DSDs from
analysis of data from the (d) optical, (e) impact and (f) video (f) disdrometers for events in Class 1
and Class 2. (g,h) accumulated KE (AKE) (g) and ADF (h) based on analysis of observations from
each disdrometer. The thin, grey rectangles in panels (g,h) show the period 20–25 May 2019.
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3.4. LCoE and Erosion-Safe Mode

The estimated AEP for the 3 MW wind turbine based on hub-height wind speeds from
the Doppler lidar is approximately 10.88 GWh/yr. This equates to a mean capacity factor
of 41.4% (Figures 14 and 15). This is equal to the average net capacity factor in 2020 for US
projects built from 2014 to 2019 [65]. The LCoE for the base-case without implementing
erosion-safe mode (i.e., curtailment during highly erosive periods) derived using the cost
assumptions given above is 28–30.5 USD/MWh. This is at the lower end of the current
national average LCoE (computed excluding production-tax credit) of approximately
32 USD/MWh [77,78], likely due in part to the exceptionally favorable wind conditions in
the Southern Great Plains. Estimated mean LCoE operating for wind plants in the ERCOT
grid operator region (most of Texas) is 29 USD/MWh [78].
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Figure 14. LCoE (USD/MWh; circle markers) and AEP (GWh; * markers) computed using hydrome-
teor DSD data from the three different disdrometers for varying levels of curtailment, to avoid the
most highly erosive periods. For this figure, the curtailment is assumed to occur in 10 min periods.

Using the Springer model for lifetime assessment, based on the hydrometeor size
distributions from the three disdrometers, an analysis was undertaken by removing periods
with highest increment in ADF and then recalculating the ADF and the coating lifetime.
The LCoE is then also recomputed for that new lifetime (i.e., delayed O&M costs for blade
replacement and associated loss of production) and with the reduced AEP due to the
curtailment. This analysis is performed using two different time intervals: 10 min and
1 min. In the former, the 1 min estimates of ADF and AE from each 1 min period are
averaged within 10 min blocks, prior to selection of the 0.0X% most damaging periods.

Analyses based on hydrometeor DSD from the impact disdrometer indicate a blade
lifetime from the Springer model of >25 years (Table 2). Thus, there is no benefit from
erosion-safe mode operation can be achieved, since the wind farm lifetime assumed in
these analyses is 25 years. However, hydrometeor DSD from both the video and optical
disdrometer in the Springer model indicate blade coating lifetimes <25 years (Table 2). Data
from the video disdrometer indicate that a curtailment of 26 10 min periods (or 4.3 h) yields
the lowest LCoE. Hydrometeor DSD from the optical disdrometer indicate that curtailment
during 52 10 min periods per year (or 8.7 h) yields the lowest LCoE (Figure 14).
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As shown above (Figure 8), extremely damaging hydroclimatic events are very short-
lived and typically do not extend over a 10 min period. Assuming down-regulation could
be implemented on shorter time scales of 1 min for only ~160 min per year (<3 h) needs to
be subject to curtailment to minimize LCoE, based on analyses using data from the video
disdrometer (Figure 15). Equivalent analyses based on data from the optical disdrometer
indicate minimum LCoE for curtailment during an average of ~415 min per year (7 h).

It is worthy of note that the highly damaging periods (i.e., periods with high incre-
mental ADF) tend to be associated with high wind speeds and thus considerable power
production (i.e., wind turbines operating at, or very near to, rated power). A 0.1% curtail-
ment corresponds to a ~0.2% reduction in AEP, since the most erosive events are primarily
at times of above-rated wind speed. Nevertheless, this loss of production is compensated
for by the increment in blade lifetimes for the costings described in Section 2.6.

4. Discussion

The research presented herein has a range of important implications for the wind
energy industry. The following lists the key results as they relate to the explicit goals of
this analysis:

1. Quantify and characterize differences in hydrometeor DSD due to disdrometer metrology and
illustrate the influence of those differences and key data processing decisions on resulting
hydrometeor size distributions and rainfall rates. Efforts to quantify relative damage
potential across different locations are critically contingent on the metrology used to
characterize the site hydroclimate. The degree to which the disdrometer technology
used influences the kinetic energy of impacts and/or blade lifetimes from the Springer
model is also likely to be partly a function of the prevailing hydroclimate. The
precise choice of the filter used to exclude signals associated with anonymous fall
velocities also has a notable effect on hydrometeor concentrations and RR. Using a
filter for vf so that it must lie within ±50% of the terminal fall velocity estimated by
Gunn and Kinzer [42] excludes 29% of droplets reported by the optical disdrometer.
Using an envelope of ±60% of the terminal fall velocity estimated by Gunn and
Kinzer [42] excludes 24%. The optical and impact disdrometers are also subject to
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missed counts, due to simultaneous hydrometeor interactions with the sensor, which
has a detectable effect on DSDs at high RR, especially for small hydrometeor diameters.
The closure between RR from the disdrometers also exhibits a consistent dependence
on wind speeds, with the optical disdrometer appearing to exhibit greatest sensitivity
to wind speed.

2. Estimate annual average kinetic energy transfer to blades from hydrometeor impacts and
quantify uncertainty due to disdrometer metrology. The total estimated kinetic energy
varies between 4.14 × 107 J m−2 (using data from the impact disdrometer) and
6.66 × 107 J m−2 (using data from the optical disdrometer), due to differences in the
reported number counts and derived DSD. Although there is a positive relationship
between 1 min kinetic energy of impact accumulated across all hydrometeor diameters
and rainfall rates, there is considerable scatter. This reemphasizes the critical need for
droplet size distribution, fall velocities and axis ratio measurements, in order to make
robust damage estimates. Annualized KE of impacts based on data from the optical
disdrometer are very sensitive to the precise data selection criterion applied based on
vf. When the envelope of permitted vf is expanded to include values within ±60% of
vt from Gunn and Kinzer [42], the annualized total KE is increased by almost 15%,
and when no filter is applied the annualized total KE is increased by a factor of 10.

3. Estimate wind turbine blade lifetimes using the Springer model [49] and quantify uncertainty
due to disdrometer metrology. Estimates of blade coating lifetime from the Springer model vary
significantly among the three disdrometer data sets. From most erosive to least erosive,
the coating lifetimes are 15.7 years (based on data from the optical disdrometer
with a +/− 50% vf window), 17.5 years (video disdrometer) and 27.2 years (impact
disdrometer). These disparate results would lead a wind plant owner/operator to
choose very different LEE mitigation strategies. This reinforces the urgent need
for research to better characterize disdrometer performance for this application. In
the current work, hailstone impacts are modelled as being equivalent to raindrop
impacts. Appropriate modeling of solid-phase hydrometeor impacts is a matter of
great importance that is being addressed by laboratory testing [79,80].

4. Evaluate the degree to which highly erosive events are concentrated in time and attributable to
the occurrence of hail. The wind and hydroclimate of the US Southern Great Plains is
such that damaging events are highly concentrated in time. Up to half of annualized
KE of impact is associated with 6–12 h in the year. In the 5-year period from which
data are collated to build a representative data set of 4-year equivalent duration, a
single 6-day period contributed 6.74% of the 4-year accumulated distance to failure
and 6.31% of the accumulated kinetic energy transfer. Even excluding any influence
from hydrometeor hardness, hail, which occurs in fewer than 1/80th of precipitation
periods, contributes nearly 10% of annualized KE transfer to the blades, due to the
large associated hydrometeor diameters.

5. Evaluate cost effectiveness of erosion-safe mode, and the influence of disdrometer metrology
on optical erosion-safe mode curtailment strategy. This research suggests that adopting
erosion-safe mode, wherein the wind turbine is curtailed during the most erosive
events, could yield substantial LCoE benefits. However, the cost-effectiveness of this
strategy and the optimal amount of curtailment is a strong function of the disdrometer
from which the hydrometeor data are drawn. Optimal curtailment is almost half as
long when DSD from the video disdrometer are used in the Springer model, relative
to those from the optical disdrometer. Lifetimes estimated using data from the video
disdrometer indicate that the lowest LCoE, associated with a curtailment of 26 10 min
periods (or 4.3 h), yields the lowest LCoE. Using hydrometeor DSD from the optical
disdrometer indicates that curtailment during 52 10 min periods per year (or 8.7 h)
yields the lowest LCoE. Assuming curtailment could be operationalized on a 1 min
timescale, only ~160 min per year (<3 h) need be subject to curtailment to minimize
LCoE, based on analyses using data from the video disdrometer.
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There are a number of important caveats to the work presented herein. First, the KE of
impact and the coating lifetimes computed using the Springer model may well be underesti-
mated and overestimated, respectively, due to the very strict data control procedure applied
to exclude hydrometeors falling at velocities that differ appreciably from expected terminal
fall velocities. Second, a critical uncertainty in terms of actual LEE potential/lifetimes
is that our modeling with Springer and for the KE transfer implicitly assumes that the
material response to hailstones is equal to that of rain droplets of equivalent diameter. This
is not accurate [13], and is likely to lead to negative bias in the hail contribution to damage.

The results presented here with regards to the importance of disdrometer metrology
to damage estimation are likely relatively robust with respect to the precise data screening
procedure applied. Nevertheless, the precise threshold that should be used to screen
disdrometer data to exclude signal contamination from splash/non-hydrometeor objects
from consideration demands further research. Indeed, analyses presented herein indicate
the urgent need for best practice to be developed for data quality control of disdrometer data
in the context of wind turbine blade leading-edge erosion. There is also a need to perform
further instrument closure experiments to better understand the relative performance of
different disdrometers under the atmospheric conditions of greatest importance to the wind
energy industry.

5. Conclusions

Accurate estimation of LEE potential is of critical importance for both wind farm
planning and operation. In the wind farm planning phase, availability of a priori estimates
of the probability of atmospheric conditions associated with large materials stresses could
guide decisions regarding whether to apply additional leading-edge protection prior to
wind turbine deployment. In wind farm operation, the availability of short-term forecasts
or nowcasts from models of measurements of highly erosive events could inform decisions
regarding whether to curtail the wind turbines or slow blade rotation, in order to reduce the
kinetic energy of impacts. However, large uncertainties associated with the detection and
quantification of hydrometeor number, type, and phase preclude accurate characterization
of the likely LEE at the event and/or climate time scales.

Based on co-located disdrometer observations in the US SGP, the choice of disdrometer
and data post-processing procedures can make a ~60% difference in estimates of the kinetic
energy of impact and the resulting blade lifetimes. In this location, up to 50% of the material
stresses responsible for LEE may occur during just 6–12 h per year. The implication is that
proper assessment of relative LEE potential across sites may require long measurement
campaigns, and also that measurement (and modeling) fidelity is particularly required for
these short-lived periods when high wind speeds co-occur with very heavy precipitation
and the occurrence of hail. This time concentration of potentially damaging events also
has implications for erosion mitigation. Operating a wind turbine in erosion-safe mode
(curtailing rotor speed to zero) during the most erosive 0.1–0.2% of 10 min periods leads to
a minimum estimated LCoE. However, the amount of curtailment required is also strongly
influenced by the disdrometer type used to measure the hydrometeor size distribution and
fall velocity.
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