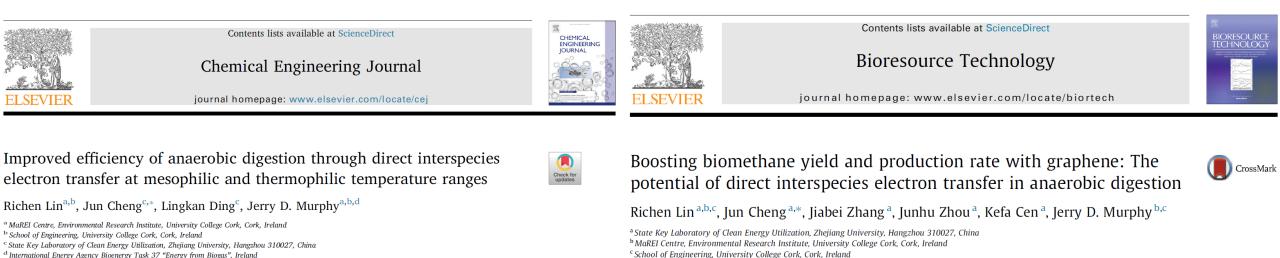
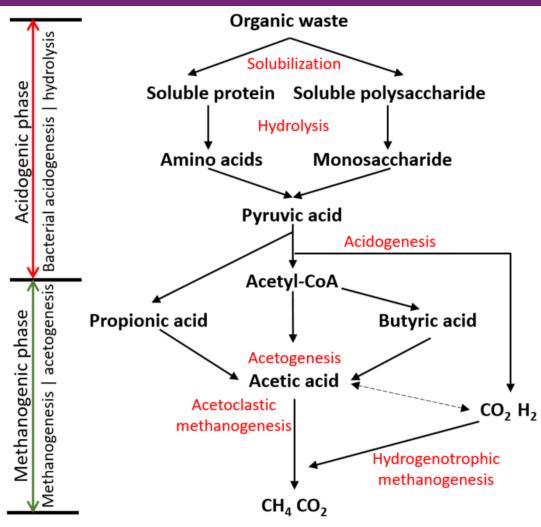


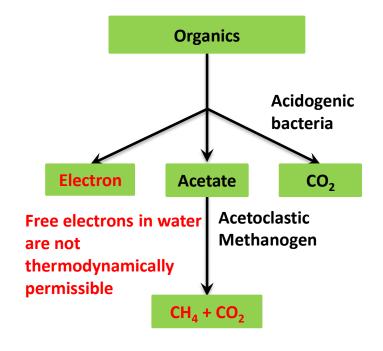
Microbial interspecies electron transfer in anaerobic digestion

Dr. Richen Lin


MaREI Centre, Environmental Research Institute

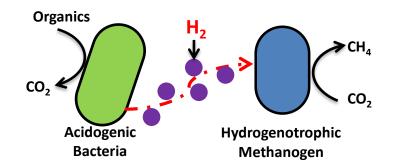
University College Cork, Ireland


RENEWABLE GAS SYSTEM GASIFICATION Wind Methanation Woody Crops Domestic Users 200 RENEWABLE ELECTRICITY Surplus Renewable Solar Wave Electricity Micro-Algae Electrolysis Upgrading **Fish Farm** 0 0 din din UPGRADING Renewable Transport Methanation Animal Wastes POWER **TO GAS** BIOMASS ANAEROBIC Organ Liquid Digestate **Biogas** DIGESTION Seaweed Grass Wastes 0 Solid Digestate Oxygen yngas Electricity Grid Digestate Biomass Hydrogen Industry **Natural Gas Grid** - Carbon Dioxide (Biomethane)


^d International Energy Agency Bioenergy Task 37 "Energy from Biogas", Ireland

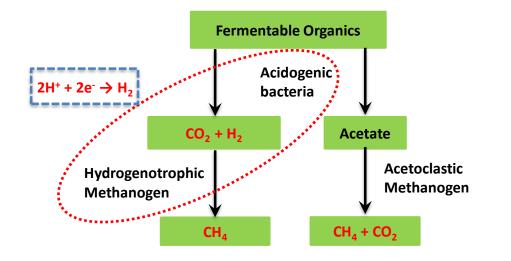
*****Graphene could enhance biogas production rate in mesophilic and thermophilic anaerobic digestion by 30%.

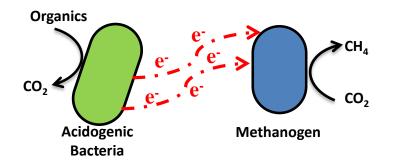
Interspecies electron transfer in anaerobic digestion


Simplified Model for Conversion of Organics to Methane

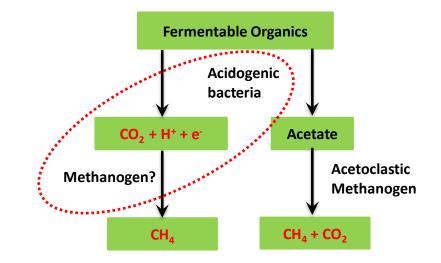
Four steps involved in anaerobic digestion.

- Hydrolysis
- Acidogenesis
- Acetogenesis
- Methanogenesis


Bioenergy


Two modes for electron transfer

Mediated Interspecies Electron Transfer (MIET) between Acidogenic Bacteria and Hydrogenotrophic Methanogen


Mediated Interspecies Electron Transfer (MIET)

Direct Interspecies Electron Transfer (DIET) between Acidogenic Bacteria and Methanogen

Direct Interspecies Electron Transfer (DIET)

Models: theoretical maximum electron transfer via MIET / DIET

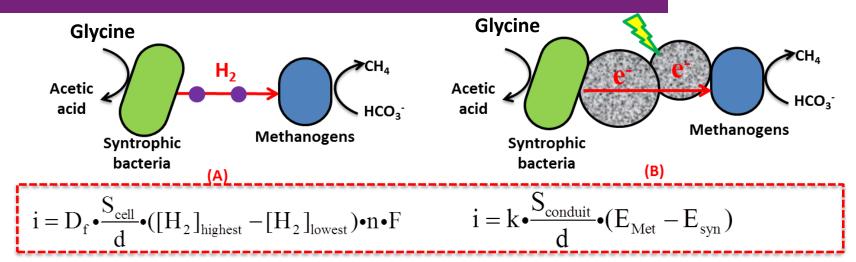
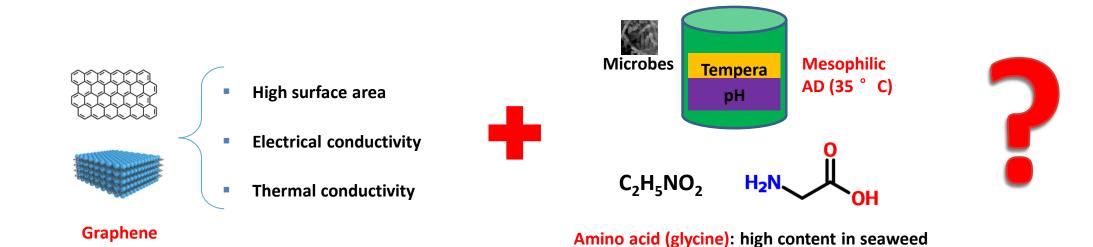



Table Gibbs free energy changes of DIET reactions under standard condition (pH = 7).

Process	Reaction	ΔG ₀ ′ (kJ/mol)
1. Electron-producing reaction	MIET: $C_2H_5NO_2 + 2/3H_2O \rightarrow 2/3CH_3COO + 2/3H^+ + NH_3 + 2/3CO_2 + 1/3H_2$	-33.42
	DIET: $C_2H_5NO_2 + 2/3H_2O \rightarrow 2/3CH_3COO- + 2/3H^+ + NH_3 + 2/3CO_2 + 2/3H^+ + 2/3e^-$	-59.97
2. Electron-consuming reaction	MIET: $1/3H_2 + 1/12CO_2 \rightarrow 1/12CH_4 + 1/6H_2O$	-10.89
	DIET: $2/3H^+ + 2/3e^- + 1/12CO_2 \rightarrow 1/12CH_4 + 1/6H_2O$	15.66
3. Acetate-consuming reaction	$2/3CH_3COO^- + 2/3H^+ \rightarrow 2/3CH_4 + 2/3CO_2$	-23.94
Overall	$C_2H_5NO_2 + 1/2H_2O \rightarrow 3/4CH_4 + NH_3 + 5/4CO_2$	-68.25

 Graphene-based DIET sustains a much higher electron transfer flux (up to 6 orders of magnitude) than conventional hydrogen transfer.

Hypothesis: conductive graphene can promote DIET

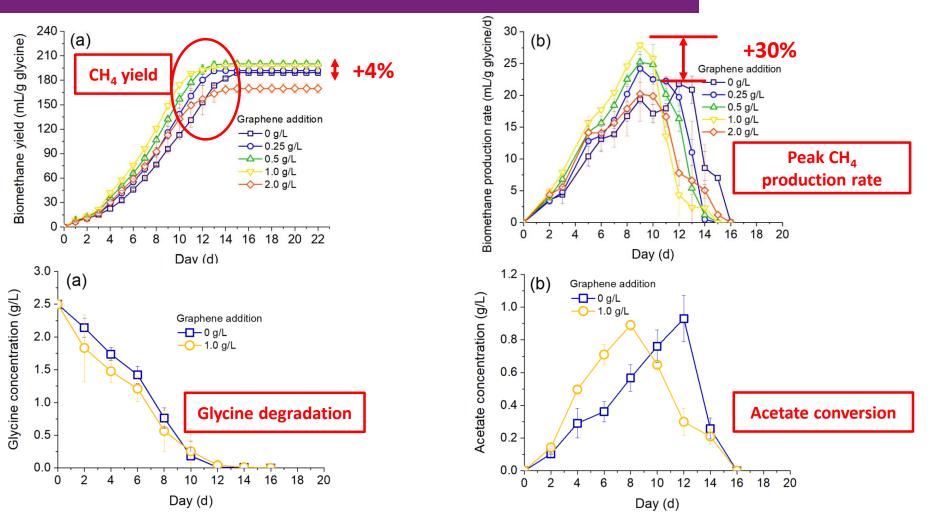
Batch Biomethane Potential System

Fig. 1. Schematic diagram of the AMPTS II system for batch anaerobic digestion experiments.

CH₄

Inoculum Feedstock CO,

Mixer


Data processing

Data processing		
	CH_4+CO_2	Inoculum (5 g/L)
		Glycine (2.5 g/L)
CH ₄ measuring unit NaOH solution	400ml	Graphene (different additions)

No.	Graphene addition (g/L)
1	0
2	0.25
3	0.5
4	1
5	2

(

Results: Anaerobic digestion performance

In the presence of 1 g/L graphene,

- Biomethane yield increased by 4.2%, peak production rate increased by 30.0%,
- Glycine consumption rate (at 8 d) reached 77.6% in comparison to 69.6% in control group.
- Acetate conversion was enhanced.

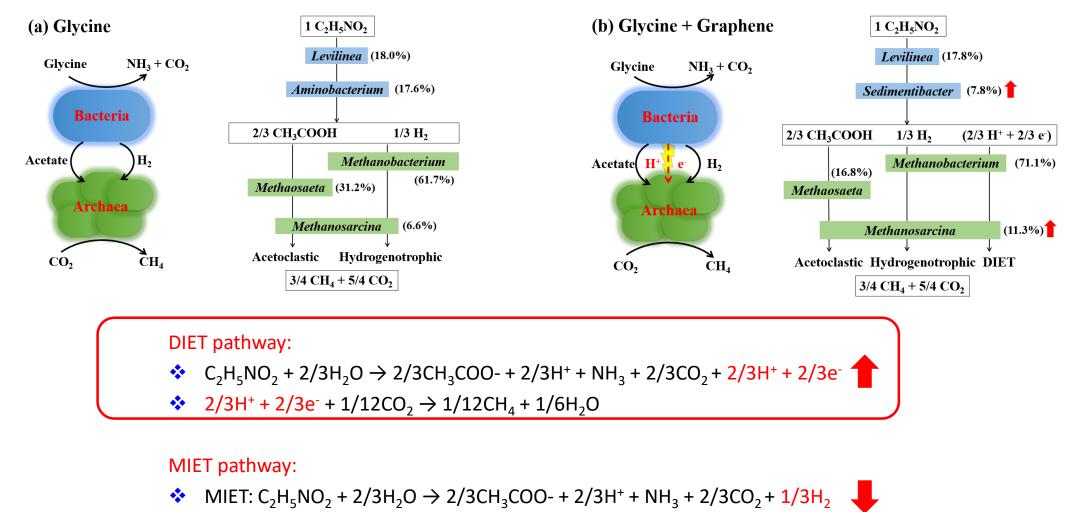
Bioenergy

Results: Microbial communities

In the presence of graphene,

The abundance of acidogen Sedimentibacter increased with increased graphene addition.

Temperature optimum	33–34
(°C)	7.2-8.2
pH optimum	1.2-0.2
Requirement of yeast	+
extract for growth	
Decarboxylation of	+
4-OHB and 3,4-OHB	
Fermentation of:	
Glycine	+
Purines	-
Pyruvate ^e	+ (A, B)
Carbohydrates	-
H ₂ production	-


Sedimentibacter ferment glycine to acetic acid without production of H_2 (Lechner, U. 2015).

 $C_2H_5NO_2 + 2/3H_2O \rightarrow 2/3CH_3COO- + 2/3H^+ + NH_3 + 2/3CO_2 + 2/3H^+ + 2/3e^-$

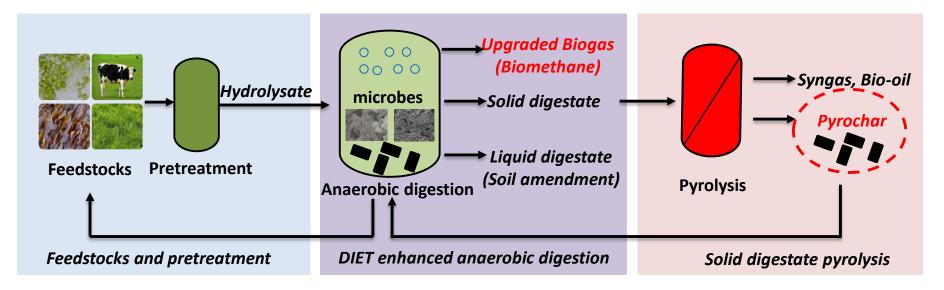
In the presence of graphene,

The abundance of *Methanosarcina* increased with increased graphene addition.

Results: Microbial networks

♦ MIET: $1/3H_2 + 1/12CO_2 \rightarrow 1/12CH_4 + 1/6H_2O$

The connections between *Sedimentibacter and Methanosarcina* are likely responsible for DIET in glycine digestion.


Summary

- DIET is thermodynamically more favourable compared to MIET.
- The peak biomethane production rate, lag phase time, and peak time exhibited strong linear correlations with graphene concentration from 0 to 1.0 g/L.

()

Bioenergy

The connections between Sedimentibacter and Methanosarcina are likely responsible for DIET in glycine digestion.

Proposed advanced biofuel production in a circular bioenergy system

Centre for Marine and Renewable Energy	WHO WE ARE 🔻	WHO WE ARE • RESEARCH •				INDUS	NDUSTRY - DATA HUB -		• so	SOCIETAL IMPACT 🔻		
	NEWS & MEDIA V											
	Marine Renewable Ene Technologies	rgy	Materia Structu		Observation & Operations		Coastal & M Systems	larine	Bioenergy	Energy Policy & Modelling	Energy Management	

Thank you!

Marie Skłodowska-Curie Actions