

# Vihanti

Alternative Names: Lampinsaari, Isoaho Occurence type: deposit

| Commodity             | Rank | Total        | Total production | Total resource | Importance    |
|-----------------------|------|--------------|------------------|----------------|---------------|
|                       |      | measure      |                  |                |               |
| zinc                  | 1    | 1478113,07 t | 1445122,67 t     | 32990,4 t      | Large deposit |
| copper                | 2    | 159839,62 t  | 128682,02 t      | 31157,6 t      | Medium        |
|                       |      |              |                  |                | sized deposit |
| gold                  | 3    | 3,27 t       | 3,27 t           | 0 t            | Small deposit |
| lead                  | 3    | 98327,27 t   | 98327,27 t       | 0 t            | Medium        |
|                       |      |              |                  |                | sized deposit |
| silver                | 3    | 278,07 t     | 278,07 t         | 0 t            | Small deposit |
| phosphorous pentoxide | 4    | 83916 t      | 0 t              | 83916 t        | Occurrence    |
| uranium               | 4    | 725,2 t      | 0 t              | 725,2 t        | Small deposit |
| sulphur               | 5    | 422643,88 t  | 422643,88 t      | 0 t            | Medium        |
|                       |      |              |                  |                | sized deposit |

Easting EUREF: 410557,757 Northing EUREF: 7143629,837 Easting YKJ: 3410694 Northing YKJ: 7146622

17.1.2024

Discovery year: 1946

**Discovered by:** Geological Survey of Finland **Province:** Vihanti-Pyhäsalmi (Zn, Cu)

District: Vihanti (Zn, Cu)

**Comments:** The first indications were mineralised samples from glacial erractics found by amateur prospectors in 1936 and 1939; these led the GTK to discover the ore by drilling into an area indicated by glacial erratic boulder survey and as an electric and magnetic anomaly.

**References:** 2, 7, 8, 19, 20, 24, 26, 28, 29, 30, 34, 35, 36, 37, 39, 40, 45, 46, 47, 48, 49, 50, 51, 54, 58, 62, 64, 65, 67, 69

#### Mineral deposit type

Group: Metallogenic deposit Main type: VMS (mixed hydrothermal) Sub type 1: Bimodal-felsic References: 14, 21, 25, 27, 28, 38, 42

#### Dimension

Expression: geophysical anomaly Form: concordant Shape: irregular Length (m): 1500 Width (m): 125 Thickness (m): NA Depth (m): 1000 Area (ha): NA Dip azim: 315 Dip: NA Plunge azim: NA Plunge dip: NA Orientation method: NA

**Dimension comments:** 1-50 m thick, 50-200 m wide and 150-900 m long lodes: pyrite, zinc, chalcopyrite and Pb-Ag-Au lodes; the Zn and pyrite lodes are 10-20 m apart. Main ore bodies are Ristonaho, Välisaari and Lampinsaari; Ristonaho and Välisaari combined is 1100 m long, and both are 100 m wide and 10-60 thick. Isoaho is a plate extending from the level 350 m to the level 1000 m



(below surface). The main pyrite ore bodies are Hautaräme and Hautakangas. U-P ore is separate from the sulphide ores.

# Holder history

### Previous holders:

| Application for    | Norrbotten Exploration AB is owned by                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------|
| exploration permit | Arctic Minerals AB                                                                                                 |
| Claim (old law)    | NA                                                                                                                 |
| NA                 | NA                                                                                                                 |
| Mining concession  | NA                                                                                                                 |
| (old law)          |                                                                                                                    |
| NA                 | NA                                                                                                                 |
| NA                 | NA                                                                                                                 |
|                    | Application for<br>exploration permit<br>Claim (old law)<br>NA<br>Mining concession<br>(old law)<br>NA<br>NA<br>NA |

# Figures





#### Location of Vihanti-U SE of Vihanti ("VIHANNIN MALMI"):







# **EXPLORATION ACTIVITY**

# Arctic Minerals AB

| Years     | Activity type                                                                                          | Geologist     | Exploration result  | Ref  |
|-----------|--------------------------------------------------------------------------------------------------------|---------------|---------------------|------|
| 2018-2019 | detailed geophysics                                                                                    | Risto Pietilä | geophysical anomaly | 3, 4 |
|           | Reassessment of existing geophysical data: "interpretation shows a clear seismic anomaly located at a  |               |                     |      |
|           | depth of approximately 1,000 meters to the southwest of the old mine and down-dip from the original    |               |                     |      |
|           | orebody. The anomaly is consistent with the type to be expected by the presence of massive sulphides." |               |                     |      |

# Geological Survey of Finland

| Years     | Activity type                                                                                                | Geologist                 | Exploration result      | Ref                    |
|-----------|--------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|------------------------|
| 1993-2006 | core drilling                                                                                                | J. Nikander               | key geological features | 36, 37, 38, 39         |
|           | 151 diamond drill holes in the Vihanti area. Of this, 20 diamond-drill holes, total 2638 m, in 2004-2005 and |                           |                         |                        |
|           | 12 drill holes, 2886 m,                                                                                      | in 2006                   |                         |                        |
|           |                                                                                                              |                           |                         |                        |
| 1992-2006 | detailed geology                                                                                             | J. Kousa, J. Nikander, J. | NA                      |                        |
|           |                                                                                                              | Luukas, E. Iisalo         |                         |                        |
|           |                                                                                                              |                           |                         |                        |
| 1984-1984 | regional                                                                                                     | Esko lisalo               | NA                      | 9, 10, 11, 12, 17, 39, |
|           | geochemistry                                                                                                 |                           |                         | 60                     |
|           | Regional till geochemical survey.                                                                            |                           |                         |                        |
|           |                                                                                                              |                           |                         |                        |
| 1983-1983 | regional geophysics                                                                                          | NA                        | key geological features |                        |
|           | Low-altitude airborne magnetic, electromagnetic and radiometric survey                                       |                           |                         |                        |

# University of Helsinki

| Years     | Activity type                                                                   | Geologist                  | Exploration result  | Ref                 |
|-----------|---------------------------------------------------------------------------------|----------------------------|---------------------|---------------------|
| 1978-1983 | detailed geology                                                                | P. Rehtijärvi, P. Soljanto | mineral occurrences | 31, 48, 49, 50, 51, |
|           |                                                                                 |                            |                     | 52, 53, 63          |
|           | Detailed mineralogical work on the Vihanti uranium-phosphorus mineralised rocks |                            |                     |                     |

# Outokumpu Oy

| Years     | Activity type | Geologist                   | Exploration result | Ref                    |
|-----------|---------------|-----------------------------|--------------------|------------------------|
| 1973-1992 | ore deposit   | R. Sarikkola, E. Rauhamäki, | NA                 | 14, 21, 31, 34, 46, 47 |
|           | evaluation    | K. Pelkonen, OP. Isomäki    |                    |                        |

# Geological Survey of Finland

Mineral Deposit Report

Page 6 OF 38

17.1.2024

₿GTK

Geological Survey of Finland

| Years     | Activity type                                                                                                   | Geologist                           | Exploration result                | Ref                  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------|--|
| 1970-2005 | geological                                                                                                      | Jarmo Nikander, Jukka               | key geological features           | 18, 19, 20, 24, 25,  |  |
|           | interpretation                                                                                                  | Kousa, Jouni Luukas, Kirsti         |                                   | 26, 27, 28, 29, 36,  |  |
|           |                                                                                                                 | Loukola-Ruskeeniemi                 |                                   | 37, 38, 39, 60, 67,  |  |
|           |                                                                                                                 |                                     |                                   | 69, 71               |  |
|           |                                                                                                                 |                                     |                                   |                      |  |
| 1970-2005 | detailed                                                                                                        | Alf Björklund, L-M Kauranne,        | geochemical anomaly               | 5, 6, 9, 10, 11, 12, |  |
|           | geochemistry                                                                                                    | Esko Iisalo, K. Loukola-            |                                   | 17, 28               |  |
|           |                                                                                                                 | Ruskeeniemi                         |                                   |                      |  |
|           | A strong Au anomaly i                                                                                           | n till related to the ore, also wh  | ere practically all zinc has beer | n leached away from  |  |
|           | till. Only a low-contrast, incoherent, areally restricted Zn-Pb-Cu anomaly in till; rather, the Zn anomalies in |                                     |                                   |                      |  |
|           | till reflect the locations of granitic rocks in the region. An extensive Zn anomaly in dolomites and skarns     |                                     |                                   |                      |  |
|           | and a similar Pb anomaly in all local rocks, except the black schists. The sequence of increasing lateral       |                                     |                                   |                      |  |
|           | extent of the anomalie                                                                                          | es is: Cu, Mo, U, Ba, Tl, As, Hg, Z | In, Ag,                           |                      |  |

# Outokumpu Oy

| Years     | Activity type                    | Geologist          | Exploration result  | Ref |  |
|-----------|----------------------------------|--------------------|---------------------|-----|--|
| 1962-1968 | detailed<br>geochemistry         | Heikki Wennervirta | geochemical anomaly | 70  |  |
|           | Detailed lithogeochemical survey |                    |                     |     |  |

| 1951-1992 | core drilling                                                                                  | Pentti Rouhunkoski                | mineral reserve defined          | 4, 21, 54             |
|-----------|------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------|
|           | Extensive diamond dril                                                                         | lling in 25 m profiles across the | ore; by the end of 1966 total dr | illing was 120 km.    |
|           | Arctic Minerals reports                                                                        | s (21 Feb 2019) "Towards the er   | nd of the mine life, Outokumpu   | drilled one hole from |
|           | the bottom of the mine. This hole intersected several zones of semi-massive sulphide ore These |                                   |                                  |                       |
|           | intersections are locate                                                                       | ed at a lateral distance estimat  | ed to be between 300 and 500 i   | meters from the edge  |
|           | of the newly identified                                                                        | seismic anomaly"                  |                                  |                       |

| 1951-1992 | detailed geophysics                             | Pentti Rouhunkoski, R.         | geophysical anomaly             | 1, 21, 30, 34, 54 |
|-----------|-------------------------------------------------|--------------------------------|---------------------------------|-------------------|
|           |                                                 | Sarikkola, E. Rauhamäki, K.    |                                 |                   |
|           |                                                 | Pelkonen, OP. Isomäki          |                                 |                   |
|           | The pyrite lodes have a                         | a good response on slingram an | d gravimetry. The black schists | have a strong     |
|           | response on both magnetic and electric methods. |                                |                                 |                   |

| 1951-1989 | detailed geology    | Pentti Rouhunkoski                    | key geological features    | 1, 5, 13, 14, 21, 31, |
|-----------|---------------------|---------------------------------------|----------------------------|-----------------------|
|           |                     |                                       |                            | 45, 54, 59, 70        |
|           |                     |                                       |                            |                       |
| 1951-1989 | percussion drilling | Pentti Rouhunkoski                    | geochemical anomaly        | 1, 5, 13, 14, 21, 31, |
|           |                     |                                       |                            | 43, 54, 59, 70        |
|           |                     |                                       |                            |                       |
| 1951-1992 | ore beneficiation   | P. Rouhunkoski, R. Sarikkola,         | positive feasibility study | 1, 5, 7, 14, 43, 54,  |
|           | tests               | E. Rauhamäki, K. Pelkonen,            |                            | 58, 59, 62            |
|           |                     | OP. Isomäki                           |                            |                       |
|           |                     | · · · · · · · · · · · · · · · · · · · |                            |                       |
| 1951-1989 | regional geophysics | Pentti Rouhunkoski                    | key geological features    | 1, 5, 13, 14, 21, 31, |
|           |                     |                                       |                            | 43, 54, 59, 70        |

# Geological Survey of Finland

| Years     | Activity type            | Geologist    | Exploration result         | Ref                   |
|-----------|--------------------------|--------------|----------------------------|-----------------------|
| 1951-1955 | regional geology         | Ilmari Salli | key geological features    | 56, 57                |
|           | Regional bedrock mapping |              |                            |                       |
|           |                          |              |                            |                       |
| 1946-1950 | core drilling            | Aimo Mikkola | mineral resource indicated | 5, 16, 23, 28, 54, 57 |

Mineral Deposit Report



Geological Survey of Finland

| GTK to discover the ore by drilling into an area indicated by glacial erratic boulder survey and as an electric and magnetic anomaly; 40 diamond-drill holes, total 5979 m. |       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| Intersections                                                                                                                                                               |       |  |  |  |
| HoleID                                                                                                                                                                      | NA    |  |  |  |
| From-To                                                                                                                                                                     | NA    |  |  |  |
| Length                                                                                                                                                                      | 1,2m  |  |  |  |
| uranium                                                                                                                                                                     | 0,15% |  |  |  |
| phosphorous                                                                                                                                                                 | 25,5% |  |  |  |
| pentoxide                                                                                                                                                                   |       |  |  |  |

| 1936-1950 | detailed geology                                 | Aimo Mikkola     | mineral occurrences | 13, 16, 23, 32, 33, |  |  |  |
|-----------|--------------------------------------------------|------------------|---------------------|---------------------|--|--|--|
|           |                                                  |                  |                     | 54, 68              |  |  |  |
|           | Detailed bedrock map                             | ping in the area |                     |                     |  |  |  |
|           |                                                  |                  |                     |                     |  |  |  |
| 1936-1950 | detailed geophysics                              | Aimo Mikkola     | geophysical anomaly | 13, 16, 23, 32, 33, |  |  |  |
|           |                                                  |                  |                     | 54, 56, 57, 68      |  |  |  |
|           | ground electric, gravimetric and magnetic survey |                  |                     |                     |  |  |  |
|           |                                                  |                  |                     |                     |  |  |  |
| 1936-1950 | detailed                                         | Aimo Mikkola     | geochemical anomaly | 6, 10, 17           |  |  |  |
|           | geochemistry                                     |                  |                     |                     |  |  |  |
|           | Lithogeochemical and till-geochemical surveys    |                  |                     |                     |  |  |  |

# Figures

#### Secondary anomaly:





# Secondary anomaly:





# **RESOURCES AND RESERVES**

| Most red | cent         |              |                 |                        |            |
|----------|--------------|--------------|-----------------|------------------------|------------|
|          |              |              |                 |                        |            |
| Туре:    | Company:     | Year:        | Date:           | Calc Method:           | Reference: |
| Resource | Outokumpu Oy | 1992         | NA              | Non-compliant resource | 41         |
|          |              |              |                 | estimate               |            |
|          | Category:    | Indicated ar | d inferred mine | eral resource          |            |
|          | Tonnage:     | 9,164 Mt     |                 |                        |            |
|          | copper       | 0,34 %       |                 |                        |            |
|          | zinc         | 0,36 %       |                 |                        |            |
|          | Cutoff:      | NA           |                 |                        |            |
|          |              |              |                 |                        |            |
| Туре:    | Company:     | Year:        | Date:           | Calc Method:           | Reference: |
| Resource | Outokumpu Oy | 1992         | NA              | Non-compliant resource | 71         |
|          |              |              |                 | estimate               |            |
|          | Category:    | Inferred mir | neral resource  |                        |            |
|          | Tonnage:     | 2,59 Mt      |                 |                        |            |
|          | uranium      | 0,028 %      |                 |                        |            |
|          | phosphorous  | 3,24 %       |                 |                        |            |
|          | pentoxide    |              |                 |                        |            |
|          | Cutoff:      | NA           |                 |                        |            |



# MINING

# Vihanti

Alternative Names: Alpua, Ristonaho Easting EUREF: 410557,757 Northing EUREF: 7143629,837 Status: Closed Operating years: 1952-1992 Years in production: 41 Total ore mined: 27938832 t References: 28, 41, 51, 61

#### Total production:

| Product | Product measure |
|---------|-----------------|
| copper  | 128682,02 t     |
| lead    | 98327,27 t      |
| zinc    | 1445122,67 t    |
| gold    | 3267,13 kg      |
| silver  | 278,07 t        |
| sulphur | 422643,88 t     |

#### Other materials:

| Material type | Material measure |
|---------------|------------------|
| Waste rock    | 2845360 t        |

#### Mining activity:

| Year | Ore mined | Ore       | Activity type      | Production         | Other material     |
|------|-----------|-----------|--------------------|--------------------|--------------------|
|      |           | processed |                    |                    |                    |
| 1992 | 393161 t  | 393161 t  | underground mining |                    |                    |
|      |           |           |                    | zinc 13682 t       | Waste rock 3028 t  |
|      |           |           |                    | copper 1203,07 t   |                    |
|      |           |           |                    | lead 1336,74 t     |                    |
|      |           |           |                    | gold 117,94 kg     |                    |
|      |           |           |                    | silver 8059,8 kg   |                    |
| 1991 | 1004322 t | 1004322 t | NA                 |                    |                    |
|      |           |           |                    | zinc 24003,29 t    | Waste rock 45267 t |
|      |           |           |                    | copper 3394,6 t    |                    |
|      |           |           |                    | lead 3113,39 t     |                    |
|      |           |           |                    | gold 351,51 kg     |                    |
|      |           |           |                    | silver 24103,72 kg |                    |
| 1990 | 1056661 t | 1056661 t | NA                 |                    |                    |
|      |           |           |                    | zinc 30326,17 t    | Waste rock 31817 t |
|      |           |           |                    | copper 3381,31 t   |                    |
|      |           |           |                    | lead 3486,98 t     |                    |
|      |           |           |                    | gold 412,09 kg     |                    |
|      |           |           |                    | silver 27050,52 kg |                    |
| 1989 | 1125670 t | 1125670 t | NA                 |                    |                    |
|      |           |           |                    | zinc 37259,67 t    | Waste rock 31917 t |
|      |           |           |                    | copper 3489,57 t   |                    |
|      |           |           |                    | lead 4840,38 t     |                    |
|      |           |           |                    | gold 551,57 kg     |                    |
|      |           |           |                    | silver 34895,77 kg |                    |
| 1988 | 1098886 t | 1098886 t | NA                 |                    |                    |



Geological Survey of Finland

|      |           |           |     | zinc 38680,78 t    | Waste rock 60253 t  |
|------|-----------|-----------|-----|--------------------|---------------------|
|      |           |           |     | copper 3626,32 t   |                     |
|      |           |           |     | lead 3955,98 t     |                     |
|      |           |           |     | gold 527,46 kg     |                     |
|      |           |           |     | silver 30768,8 kg  |                     |
| 1987 | 1145369 t | 1145369 t | NA  |                    |                     |
|      |           |           |     | zinc 40316,98 t    | Waste rock 86861 t  |
|      |           |           |     | copper 3779,71 t   |                     |
|      |           |           |     | lead 4123,32 t     |                     |
|      |           |           |     | gold 549,77 kg     |                     |
|      |           |           |     | silver 32070,33 kg |                     |
| 1986 | 1130084 t | 1130084 t | NA  |                    |                     |
|      |           |           |     | zinc 42717,17 t    | Waste rock 153600 t |
|      |           |           |     | copper 4181,31 t   |                     |
|      |           |           |     | lead 3955,29 t     |                     |
|      |           |           |     | gold 497,23 kg     |                     |
|      |           |           |     | silver 29834,21 kg |                     |
| 1985 | 1032318 t | 1032318 t | NA  |                    |                     |
|      |           |           |     | zinc 37782,83 t    | Waste rock 143205 t |
|      |           |           |     | copper 3716,34 t   |                     |
|      |           |           |     | lead 3922,8 t      |                     |
| 1984 | 1065760 t | 1065760 t | NA  |                    |                     |
|      |           |           |     | zinc 34956,92 t    | Waste rock 132354 t |
|      |           |           |     | copper 3836,73 t   |                     |
|      |           |           |     | lead 4049,88 t     |                     |
| 1983 | 1055993 t | 1055993 t | NA  |                    |                     |
|      |           |           |     | zinc 41606,12 t    | Waste rock 81349 t  |
|      |           |           |     | copper 3801,57 t   |                     |
|      |           |           |     | lead 3590,37 t     |                     |
| 1982 | 963121 t  | 963121 t  | NA  |                    |                     |
|      |           |           |     | zinc 37754,34 t    | Waste rock 78350 t  |
|      |           |           |     | copper 2889,36 t   |                     |
|      |           |           |     | lead 3274,61 t     |                     |
| 1981 | 956685 t  | 956685 t  | NA  |                    |                     |
|      |           |           |     | zinc 35493,01 t    | Waste rock 87698 t  |
|      |           |           |     | copper 2870,05 t   |                     |
|      |           |           |     | lead 2870,05 t     |                     |
| 1980 | 928654 t  | 928654 t  | NA  |                    |                     |
|      |           |           |     | zinc 40675,04 t    | Waste rock 78835 t  |
|      |           |           |     | copper 4643,27 t   |                     |
|      |           |           |     | lead 2878,82 t     |                     |
| 1979 | 936097 t  | 936097 t  | NA  |                    |                     |
|      |           |           |     | zinc 35758,9 t     | Waste rock 137938 t |
|      |           |           |     | copper 5335,75 t   |                     |
|      |           |           |     | lead 2901,9 t      |                     |
| 1978 | 846601 t  | 846601 t  | NA  |                    |                     |
|      |           |           |     | copper 5079,6 t    | Waste rock 158838 t |
|      |           |           |     | zinc 30308,31 t    |                     |
|      |           |           |     | sulphur 73654,28 t |                     |
| 4077 | 007744    | 007744    | NIA | lead 2285,82 t     |                     |
| 1977 | 907741 t  | 907741 t  | NA  | 5000 0 0           |                     |
|      |           |           |     | copper 5083,34 t   | waste rock 61535 t  |
|      |           |           |     | zinc 31952,48 t    |                     |
| 1070 | 002724    | 000704    | NIA | lead 2131,91 t     |                     |
| 1976 | 903734 t  | 903734 t  | NA  | 4540.05            |                     |
|      |           |           |     | copper 4518,67 t   | waste rock 55266 t  |
|      |           |           |     | zinc 36601,22 t    |                     |
| 4075 | 045000    | 0.45000   |     | lead 2168,96 t     |                     |
| 1975 | 845060 t  | 845060 t  | NA  |                    |                     |



Geological Survey of Finland

|      |          |          |    | copper 4056,28 t<br>zinc 32872,83 t<br>sulphur 40224,85 t<br>lead 1569,49 t                  | Waste rock 63409 t  |
|------|----------|----------|----|----------------------------------------------------------------------------------------------|---------------------|
| 1974 | 732603 t | 732603 t | NA | ,                                                                                            |                     |
|      |          |          |    | copper 3150,19 t<br>zinc 35751,02 t<br>sulphur 27179,57 t<br>lead 1939,28 t                  | Waste rock 90348 t  |
| 1973 | 791639 t | 791639 t | NA |                                                                                              |                     |
|      |          |          |    | copper 3562,37 t<br>zinc 39265,29 t<br>sulphur 34673,78 t<br>lead 2374,91 t                  | Waste rock 75867 t  |
| 1972 | 831931 t | 831931 t | NA |                                                                                              |                     |
|      |          |          |    | copper 3615,6 t<br>zinc 36604,96 t<br>sulphur 32029,34 t<br>lead 2163,02 t                   | Waste rock 121018 t |
| 1971 | 660573 t | 660573 t | NA |                                                                                              |                     |
|      |          |          |    | copper 2972,57 t<br>zinc 36661,8 t<br>sulphur 39832,55 t<br>lead 2019,22 t                   | Waste rock 138074 t |
| 1970 | 710600 t | 710600 t | NA |                                                                                              |                     |
|      |          |          |    | copper 2629,22 t<br>zinc 37519,68 t<br>sulphur 49813,06 t<br>lead 2273,92 t                  | Waste rock 134322 t |
| 1969 | 709331 t | 709331 t | NA |                                                                                              |                     |
|      |          |          |    | copper 1276,79 t<br>zinc 40219,06 t<br>sulphur 50362,5 t<br>lead 2796,86 t                   | Waste rock 75764 t  |
| 1968 | 706326 t | 706326 t | NA |                                                                                              |                     |
|      |          |          |    | copper 3460,99 t<br>zinc 38847,93 t<br>sulphur 52621,28 t<br>lead 1907,08 t                  | Waste rock 69039 t  |
| 1967 | 517504 t | 517504 t | NA | ,                                                                                            |                     |
|      |          |          |    | copper 2742,77 t<br>zinc 31153,74 t<br>sulphur 22252,67 t<br>lead 1623,57 t                  | Waste rock 63224 t  |
| 1966 | 435573 t | 435573 t | NA |                                                                                              |                     |
|      |          |          |    | zinc 33103,54 t<br>copper 2439,2 t<br>lead 1960,07 t                                         | Waste rock 51636 t  |
| 1965 | 487995 t | 487995 t | NA | zinc 44017,14 t<br>copper 2781,57 t<br>lead 2586.37 t                                        | Waste rock 43344 t  |
| 1964 | 466836 t | 466836 t | NA |                                                                                              |                     |
|      |          |          |    | zinc 48504,26 t<br>copper 3314,53 t<br>lead 1867,34 t                                        | Waste rock 36484 t  |
| 1963 | 464553 t | 464553 t | NA |                                                                                              |                     |
|      |          |          |    | zinc 50125,26 t<br>copper 3298,32 t<br>lead 1765,3 t<br>gold 139,36 kg<br>silver 10452,44 kg | Waste rock 42228 t  |

Page 13 OF 38



17.1.2024

| 1962 | 445189 t | 445189 t | NA |                    |                    |
|------|----------|----------|----|--------------------|--------------------|
|      |          |          |    | zinc 49148,86 t    | Waste rock 33099 t |
|      |          |          |    | copper 3962,18 t   |                    |
|      |          |          |    | lead 1647,19 t     |                    |
|      |          |          |    | gold 120,2 kg      |                    |
|      |          |          |    | silver 9883,19 kg  |                    |
| 1961 | 437300 t | 437300 t | NA |                    |                    |
|      |          |          |    | zinc 49283,71 t    | Waste rock 36917 t |
|      |          |          |    | copper 4460,46 t   |                    |
|      |          |          |    | lead 1792,93 t     |                    |
|      |          |          |    | silver 9751,79 kg  |                    |
| 1960 | 438838 t | 438838 t | NA |                    |                    |
|      |          |          |    | zinc 44717,59 t    | Waste rock 28606 t |
|      |          |          |    | copper 3861,77 t   |                    |
|      |          |          |    | lead 2281,95 t     |                    |
|      |          |          |    | silver 11409,78 kg |                    |
| 1959 | 405507 t | 405507 t | NA |                    |                    |
|      |          |          |    | zinc 56770,98 t    | Waste rock 45491 t |
|      |          |          |    | copper 3892,86 t   |                    |
|      |          |          |    | lead 2595,24 t     |                    |
|      |          |          |    | silver 10421,52 kg |                    |
| 1958 | 403782 t | 403782 t | NA |                    |                    |
|      |          |          |    | zinc 49019,13 t    | Waste rock 44202 t |
|      |          |          |    | copper 2987,98 t   |                    |
|      |          |          |    | lead 2664,96 t     |                    |
|      |          |          |    | silver 11346,27 kg |                    |
| 1957 | 402870 t | 402870 t | NA |                    |                    |
|      |          |          |    | zinc 43026,51 t    | Waste rock 48842 t |
|      |          |          |    | copper 2618,65 t   |                    |
|      |          |          |    | lead 2658,94 t     |                    |
|      |          |          |    | silver 12569,54 kg |                    |
| 1956 | 305887 t | 305887 t | NA |                    |                    |
|      |          |          |    | zinc 37685,27 t    | Waste rock 35359 t |
|      |          |          |    | copper 1835,32 t   |                    |
|      |          |          |    | lead 1804,73 t     |                    |
|      |          |          |    | silver 9574,26 kg  |                    |
| 1955 | 175254 t | 175254 t | NA |                    |                    |
|      |          |          |    | zinc 19751,12 t    | Waste rock 24443 t |
|      |          |          |    | copper 858,74 t    |                    |
|      |          |          |    | lead 1104,1 t      |                    |
|      |          |          |    | silver 5485,45 kg  |                    |
| 1954 | 12824 t  | 12824 t  | NA |                    |                    |
|      |          |          |    | zinc 1197,76 t     | Waste rock 65770 t |
|      |          |          |    | copper 73,09 t     |                    |
|      |          |          |    | lead 43,6 t        |                    |
|      |          |          |    | silver 397,54 kg   |                    |
| 1953 | 0 t      | 0 t      | NA |                    |                    |
|      |          |          |    |                    | Waste rock 34563 t |
| 1952 | 0 t      | 0 t      | NA |                    |                    |
|      |          |          |    |                    | Waste rock 15200 t |

# Figures

Page 14 OF 38 17.1.2024







# **GEOLOGY**

Ore: Sulphide ore

**Host rock:** Quartz-Plagioclase Gneiss, Felsic volcanic rock, Calcite-Apatite Metacarbonate-rock, Skarn **Wall rock:** Greywacke, Dolomitic marble, Cordierite Meta-felsic-rock

### Sulphide ore (Ore)

Rock type: Ore Proportion: major Grain size: NA Color: NA

**References:** 5, 13, 14, 18, 25, 28, 32, 38, 42, 43, 52, 54, 57, 59, 63, 67

**Comments:** Massive banded and non-banded, and disseminated sulphide ore with common sulphide±sulphosalt veins. The Zn and Cu lodes are chiefly in the diopside skarns and pyrite lodes in the 'arenaceous rocks' of the sequence .

| Mineral       | Proportion              | Mineral texture                             |
|---------------|-------------------------|---------------------------------------------|
| Antimony      | minor                   |                                             |
| Arsenopyrite  | minor                   |                                             |
| Bismuth       | minor                   |                                             |
| Boulangerite  | minor                   |                                             |
| Bournonite    | minor                   |                                             |
| Breithauptite | minor                   |                                             |
| Chalcopyrite  | major                   | Banded, Dissemination, Massive, Vein        |
|               | Grain size of ore mine  | rals is 0.05-1 mm.                          |
| Cubanite      | minor                   |                                             |
| Electrum      | minor                   |                                             |
| Gahnite       | minor                   |                                             |
| Galena        | major                   | Banded, Dissemination, Massive, Vein        |
|               | Grain size of ore mine  | rals is 0.05-1 mm.                          |
| Gold          | minor                   |                                             |
| Gudmundite    | minor                   |                                             |
| Hessite       | minor                   |                                             |
| Magnetite     | minor                   |                                             |
| Molybdenite   | minor                   |                                             |
| Nickeline     | minor                   |                                             |
| Nisbite       | minor                   |                                             |
| Pyrargyrite   | minor                   |                                             |
| Pyrite        | major                   | Banded, Dissemination, Massive, Vein        |
|               | Pyrite is commonly eu   | hedral and forms porphyroblasts up to 10 cm |
|               | in diameter (esp. in th | e pyrite lodes)                             |
| Pyrrhotite    | major                   | Massive, Banded, Dissemination, Vein        |
|               | Grain size of ore mine  | rals is 0.05-1 mm.                          |
| Silver        | minor                   |                                             |
| Sphalerite    | major                   | Massive, Banded, Dissemination, Vein        |
|               | Grain size of ore mine  | rals is 0.05-1 mm.                          |
| Stannite      | minor                   |                                             |
| Tennantite    | minor                   |                                             |
| Tetrahedrite  | minor                   |                                             |
| Ullmannite    | minor                   |                                             |
| Uraninite     | minor                   |                                             |
| Valleriite    | minor                   |                                             |



#### Other minerals:

| Mineral    | Proportion | Mineral texture |
|------------|------------|-----------------|
| Baryte     | present    |                 |
| Diopside   | present    |                 |
| Fluorite   | present    |                 |
| Graphite   | present    |                 |
| Quartz     | present    |                 |
| Rutile     | present    |                 |
| Tourmaline | present    |                 |
| Tremolite  | present    |                 |

#### Structures Veined

| Textures |  |
|----------|--|
| Massive  |  |
| Banded   |  |
|          |  |

#### Metamorphic description:

| Туре:                                                                                                          | Facies:            | Degree:          | Relation to     | Min P- Max P | MIn T- Max T |
|----------------------------------------------------------------------------------------------------------------|--------------------|------------------|-----------------|--------------|--------------|
|                                                                                                                |                    |                  | mineralization: | (kbar)       | (°C)         |
| Regional                                                                                                       | amphibolite        | high metamorphic | NA              | -8           | -630         |
|                                                                                                                | metamorphic facies | grade            |                 |              |              |
| Comments: Peak regional metamorphism at about 1876±2 Ma related to the intrusion of synorogenic, 1.89-1.87 Ga, |                    |                  |                 |              |              |
| granitoids.                                                                                                    |                    |                  |                 |              |              |

#### Geological age:

| Geological era:              | Max age - Minage<br>(Ma):                             | Inferred age (Ma): | Age of minera | lization:  |            |  |
|------------------------------|-------------------------------------------------------|--------------------|---------------|------------|------------|--|
| Paleoproterozoic (2500-1600  | 1860-2120                                             | 1979               | Y             |            |            |  |
| Ma)                          |                                                       |                    |               |            |            |  |
| Comments: The sulphides were | Comments: The sulphides were formed at about 1900 Ma. |                    |               |            |            |  |
| Radiometric age:             | Method:                                               | Age:               | Error (Ma):   | Mineral:   | Reference: |  |
|                              | Pb-Pb                                                 | 1860               |               | Microcline | 54         |  |
|                              | Pb-Pb                                                 | 1918               |               | Galena     | 66         |  |
|                              | Pb-Pb                                                 | 1925               |               | Galena     | 66         |  |
|                              | Pb-Pb                                                 | 2070               |               | Galena     | 54         |  |
|                              | Pb-Pb                                                 | 2120               |               | Galena     | 54         |  |

# Quartz-Plagioclase Gneiss (Host rock)

Rock type: Host rock Proportion: present Grain size: Medium grained 1 - 2 mm Color: Grey References: 38, 52, 53 Comments: Two variants, a pyritic zone and a pyrrhotite-dominant zone.

| Mineral | Proportion | Mineral texture |
|---------|------------|-----------------|
| Apatite | major      |                 |

Mineral Deposit Report



17.1.2024

Geological Survey of Finland

|              | Fluorapatite, grain size characteristically 0.01-0.05 mm. Most of the uranium is contained in apatite in the phosphatic tuff, whereas about half of the uranium in phosphorite is in apatite. Fluorapatite with up to 0.126 % U. |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chalcopyrite | major                                                                                                                                                                                                                            |
| Galena       | major                                                                                                                                                                                                                            |
| Pyrite       | major                                                                                                                                                                                                                            |
| Pyrrhotite   | major                                                                                                                                                                                                                            |
| Sphalerite   | major                                                                                                                                                                                                                            |
| Uraninite    | minor                                                                                                                                                                                                                            |
|              | When as inclusion in apatite, uraninite is surrounded by a distinct yellowish halo in the host apatite.                                                                                                                          |

#### Other minerals:

| other millerais. |            |                 |
|------------------|------------|-----------------|
| Mineral          | Proportion | Mineral texture |
| Chlorite         | minor      |                 |
| Fluorite         | minor      |                 |
| Phlogopite       | major      |                 |
| Plagioclase      | major      |                 |
|                  | Andesine   |                 |
| Quartz           | major      |                 |
| Rutile           | minor      |                 |
| Sericite         | minor      |                 |

| Textures     |  |
|--------------|--|
| Granoblastic |  |

#### Metamorphic description:

| Туре:              | Facies:                                                                    | Degree:          | Relation to<br>mineralization: | Min P- Max P<br>(kbar) | MIn T- Max T<br>(°C) |  |  |
|--------------------|----------------------------------------------------------------------------|------------------|--------------------------------|------------------------|----------------------|--|--|
| Regional           | amphibolite                                                                | high metamorphic | NA                             |                        |                      |  |  |
|                    | metamorphic facies                                                         | grade            |                                |                        |                      |  |  |
| Comments: U-Pb who | Comments: U-Pb whole rock dating indicates metamorphism about 1880 Ma ago. |                  |                                |                        |                      |  |  |

#### Geological age:

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |
|-----------------------------|---------------------------|--------------------|------------------------|
| Paleoproterozoic (2500-1600 | 1600-2500                 |                    | Ν                      |
| ivia)                       |                           |                    |                        |

# Felsic volcanic rock (Host rock)

Rock type: Host rock Proportion: major Grain size: NA Color: NA References: 14, 18, 25, 28, 42, 52, 54, 63, 67

#### Metamorphic description:

| Mineral      | Proportion | Mineral texture |
|--------------|------------|-----------------|
| Chalcopyrite | minor      |                 |
| Galena       | minor      |                 |
| Pyrite       | minor      |                 |
| Pyrrhotite   | minor      |                 |

Page 18 OF 38

17.1.2024



Sphalerite minor

| Other minerals: |            |                 |
|-----------------|------------|-----------------|
| Mineral         | Proportion | Mineral texture |
| Anthophyllite   | minor      |                 |
| Apatite         | minor      |                 |
| Biotite         | major      |                 |
| Calcite         | present    |                 |
| Chlorite        | minor      |                 |
| Cordierite      | major      |                 |
| Plagioclase     | major      |                 |
| Quartz          | major      |                 |
| Titanite        | present    |                 |
| Zircon          | present    |                 |

| Туре:    | Facies:                           | Degree:                   | Relation to<br>mineralization: | Min P- Max P<br>(kbar) | MIn T- Max T<br>(°C) |
|----------|-----------------------------------|---------------------------|--------------------------------|------------------------|----------------------|
| Regional | amphibolite<br>metamorphic facies | high metamorphic<br>grade | NA                             | -8                     | -630                 |

#### Geological age:

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |          |            |
|-----------------------------|---------------------------|--------------------|------------------------|----------|------------|
| Paleoproterozoic (2500-1600 | 1874-1922                 | 1922               | N                      |          |            |
| Ma)                         |                           |                    |                        |          |            |
| Radiometric age:            | Method:                   | Age:               | Error (Ma):            | Mineral: | Reference: |
|                             | U-Pb                      | 1874               | 2                      | Monazite |            |
|                             | U-Pb                      | 1898               | 12                     | Zircon   |            |
|                             | U-Pb                      | 1922               | 6                      | Zircon   |            |

# Calcite-Apatite Metacarbonate-rock (Host rock)

Rock type: Host rock Proportion: present Grain size: Medium grained 1 - 2 mm Color: NA References: 5, 40, 49, 51, 52, 53, 54, 67, 71

**Comments:** Bands and lenses less than 1 cm thick in dolomitic marble and skarn. The uraniferous phosphatic bodies occur between the hanging wall contact of the deposit and the sulphide ore lodes, mostly in the eastern part of the deposit, partly interfingering with the sulphide orebodies Hautakangas, Rämesaari and Isoaho.

| Mineral   | Proportion                                                                                             | Mineral texture                                                                                                                               |
|-----------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| NA        | minor                                                                                                  |                                                                                                                                               |
|           | Non-homogeneous U-I                                                                                    | Pb or U-Ti minerals, possibly U-thucholite.                                                                                                   |
| Apatite   | major                                                                                                  |                                                                                                                                               |
|           | Fluorapatite, grain size<br>uranium is contained i<br>about half of the urani<br>with up to 0.126 % U. | e characteristically 0.01-0.05 mm. Most of the<br>n apatite in the phosphatic tuff, whereas<br>ium in phosphorite is in apatite. Fluorapatite |
| Graphite  | minor                                                                                                  |                                                                                                                                               |
| Pyrite    | minor                                                                                                  |                                                                                                                                               |
| Uraninite | minor                                                                                                  |                                                                                                                                               |

Mineral Deposit Report



17.1.2024

Geological Survey of Finland

Inclusions and intergranular grains in phosphorite. Grain size generally 0.005 mm. When as inclusion in apatite, uraninite is surrounded by a distinct yellowish halo in the host apatite.

#### Other minerals:

| Mineral    | Proportion | Mineral texture |
|------------|------------|-----------------|
| Calcite    | major      |                 |
| Phlogopite | minor      |                 |
| Pyrrhotite | minor      |                 |
| Quartz     | minor      |                 |
| Rutile     | minor      |                 |

| Textures     |  |
|--------------|--|
| Granoblastic |  |

#### Metamorphic description:

| Туре:              | Facies:                                                                    | Degree:          | Relation to<br>mineralization: | Min P- Max P<br>(kbar) | MIn T- Max T<br>(°C) |  |  |
|--------------------|----------------------------------------------------------------------------|------------------|--------------------------------|------------------------|----------------------|--|--|
| Regional           | amphibolite                                                                | high metamorphic | NA                             |                        |                      |  |  |
|                    | metamorphic facies                                                         | grade            |                                |                        |                      |  |  |
| Comments: U-Pb who | Comments: U-Pb whole rock dating indicates metamorphism about 1880 Ma ago. |                  |                                |                        |                      |  |  |

#### **Geological age:**

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |          |            |
|-----------------------------|---------------------------|--------------------|------------------------|----------|------------|
| Paleoproterozoic (2500-1600 | 1780-1780                 | 1780               | N                      |          |            |
| Ma)                         |                           |                    |                        |          |            |
| Radiometric age:            | Method:                   | Age:               | Error (Ma):            | Mineral: | Reference: |
|                             | U-Pb                      | 1780               |                        |          | 16, 23     |

### Skarn (Host rock)

Rock type: Host rock Proportion: minor Grain size: NA Color: NA References: 5, 13, 14, 18, 25, 28, 32, 42, 52, 54, 63, 67 Comments: The Zn and Cu lodes are chiefly in the diopside skarns and pyrite lodes in the 'arenaceous rocks' of the sequence. Skarnified zones common at the contacts between dolomites and

greywackes. Skarns are the most common immediate wallrocks and may, perhaps, show signs of Mg metasomatism in the form of phlogopite or cordierite formation.

#### Metamorphic description:

| Туре:                                                                                                                       | Facies:                    | Degree:          | Relation to | Min P- Max P<br>(khar) | MIn T- Max T |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|-------------|------------------------|--------------|--|
|                                                                                                                             |                            | •••              |             |                        |              |  |
| Regional                                                                                                                    | amphibolite                | high metamorphic | NA          | -8                     | -630         |  |
|                                                                                                                             | metamorphic facies         | grade            |             |                        |              |  |
| Comments: Tremolite skarn: tremolite-quartz-plagioclase-phlogopite-calcite-dolomite-pyrrhote-pyrite $\pm$ talc, tourmaline, |                            |                  |             |                        |              |  |
| scapolite, baryte, fluorite, corundum. Diopside skarn: dioside-quartz-plagioclase-phlogopite-calcite-dolomite-pyrrhote-     |                            |                  |             |                        |              |  |
| pyrite ± talc, tourmalin                                                                                                    | ne, scapolite, baryte, flu | orite, corundum. |             |                        |              |  |

#### Geological age:



17.1.2024

| Geological era:                    | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |
|------------------------------------|---------------------------|--------------------|------------------------|
| Paleoproterozoic (2500-1600<br>Ma) | 1930-1960                 |                    | Ν                      |
|                                    |                           |                    |                        |

# Greywacke (Wall rock)

Rock type: Wall rock Proportion: minor Grain size: NA Color: NA References: 14, 18, 25, 28, 32, 42, 52, 54, 63, 67

Structures Bedded

Textures Clastic

#### Metamorphic description:

| Туре:                                                                                                                   | Facies:            | Degree:          | Relation to     | Min P- Max P | MIn T- Max T |
|-------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-----------------|--------------|--------------|
|                                                                                                                         |                    |                  | mineralization: | (kbar)       | (°C)         |
| Regional                                                                                                                | amphibolite        | high metamorphic | NA              | -8           | -630         |
|                                                                                                                         | metamorphic facies | grade            |                 |              |              |
| Comments: Greywacke (= felsic to intermediate volcanic rock) : quartz-biotite/phlogopite-plagioclase ± sulphides,       |                    |                  |                 |              |              |
| hornblende, diopside, tremolite. Cordierite gneiss: guartz-phlogopite-plagioclase ± sulphides, K feldspar, sillimanite. |                    |                  |                 |              |              |

#### **Geological age:**

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |
|-----------------------------|---------------------------|--------------------|------------------------|
| Paleoproterozoic (2500-1600 | 1930-1960                 |                    | N                      |
| Ma)                         |                           |                    |                        |

# Dolomitic marble (Wall rock)

Rock type: Wall rock Proportion: minor Grain size: NA Color: NA References: 14, 18, 25, 28, 32, 42, 52, 54, 63, 67 Comments: Dolomites may be Mg-metasomatic derivates of sedimentary/biogenic limestones.

| Other minerals: |            |                 |
|-----------------|------------|-----------------|
| Mineral         | Proportion | Mineral texture |
| Dolomite        | present    |                 |

| Structures |  |
|------------|--|
| Bedded     |  |



#### Metamorphic description:

| Туре:                                                                                                  | Facies:            | Degree:          | Relation to<br>mineralization: | Min P- Max P<br>(kbar) | MIn T- Max T<br>(°C) |
|--------------------------------------------------------------------------------------------------------|--------------------|------------------|--------------------------------|------------------------|----------------------|
| Regional                                                                                               | amphibolite        | high metamorphic | NA                             | -8                     | -630                 |
|                                                                                                        | metamorphic facies | grade            |                                |                        |                      |
| Comments: Dolomite: Biotite-dolomite-calcite-diopside-tremolite-olivine-clinohumite-garnet-pyrrhotite. |                    |                  |                                |                        |                      |

#### Geological age:

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |
|-----------------------------|---------------------------|--------------------|------------------------|
| Paleoproterozoic (2500-1600 | 1930-1960                 |                    | N                      |
| Ma)                         |                           |                    |                        |

### Cordierite Meta-felsic-rock (Wall rock)

Rock type: Wall rock Proportion: minor Grain size: NA Color: NA References: 14, 18, 25, 28, 38, 42, 52, 54, 63, 67 Comments: Subvolcanic sill. Derived by cordierite±sillimanite±K-feldspar alteration form the subvolcanic quartz porphyry. Abundant in the W and upper parts and dominates in the hanging wall. Mg-Al-B-enriched rock.

#### Metamorphic description:

| Mineral    | Proportion | Mineral texture |  |
|------------|------------|-----------------|--|
| Cordierite | present    |                 |  |

| Туре:    | Facies:            | Degree:          | Relation to     | Min P- Max P | MIn T- Max T |
|----------|--------------------|------------------|-----------------|--------------|--------------|
|          |                    |                  | mineralization: | (kbar)       | (°C)         |
| Regional | amphibolite        | high metamorphic | NA              | -8           | -630         |
|          | metamorphic facies | grade            |                 |              |              |

#### Geological age:

| Geological era:             | Max age - Minage<br>(Ma): | Inferred age (Ma): | Age of mineralization: |  |
|-----------------------------|---------------------------|--------------------|------------------------|--|
| Paleoproterozoic (2500-1600 | 1930-1960                 |                    | Ν                      |  |
| Ma)                         |                           |                    |                        |  |

### **Figures**

Mineral Deposit Report

Geological Survey of Finland

Page 22 OF 38



17.1.2024

#### Schematic modelling:







#### Sulphide occurrences in the Vihanti area (Vihanti-U = Lampinsaari):

Kuva 1. Raahe-Laatokka –vyöhykkeen luoteisosan yleistetty geologia, tärkeimmät sulfidimalmiesiintymät ja malmitutkimuskohteet (modifioitu Lundqvist et al. 1996). Fig. 1. Generalised lithological map of the Raahe-Ladoga zone with major zink ore deposits and prospects (modified Lundqvist et al. 1996).

#### Surface geology of the Vihanti ore deposit with map of the Lampinsaari village and the



tailings area:









Uraninite grains in microscope, with a typical yellow radiation halo in the apatite.





*Stratigraphy in the Lampinsaari-Vilminko area. The units marked 'UP' host the uraniferous* 

26





#### & phosphatic occurrences:



Kuva 3. Lampinsaaren – Vilmingon alueen stratigrafia. Fig. 3. Stratigraphy of the Lampinsaari-Vilminko area.

Part of the aeroradiometric map from the GTK databases: a three-component image for U (red), Th (blue) and K (green) channels. The tailings area shows as a uranium channel



#### anomaly:



Regional geology:





#### **Outcrop photo:**



Skarn-banded intermediate metavolcanic rock. Vihanti mine, drill hole R1017, 55.60 m. Width of drill core 2.2 cm. From Luukas et al. (2004).

Plan view:







Massive sphalerite-galena ore at Vihanti. Field of view about 10 cm. Photo Jari Väätäinen.



30

17.1.2024 **STK** 



Edited by P. Eilu (2000)









# REFERENCES

**1.** Anon. 1958. Selonteko hakemusten alaisten kaivospiirien Lampinsaari 9-16 alueilla suoritetuista tutkimuksista ja niiden tuloksista. Outokumpu Oy, Vihanti mine Report. (in Finnish)

**2.** Anon. 2005. Luonnon radioaktiivisia aineita sisältävät materiaalit. STUK tiedottaa 2/2005, 14 p. (in Finnish)*http://tupa.gtk.fi/karttasovellus/mdae/references/525\_Vihanti/stuk.pdf* 

**3.** Arctic Minerals 2019. Media release 26 March 2019 http://tupa.gtk.fi/karttasovellus/mdae/references/526\_Kuuhkamo/526\_ArcticMinerals005\_20190326.pdf

**4.** Arctic Minerals AB 2019. Year-end report for the full year 2018. 21 February 2019 http://tupa.gtk.fi/karttasovellus/mdae/references/526\_Kuuhkamo/526\_ArcticMinerals003\_20190221.pdf

**5.** Autere, I., Pelkonen, K. & Pulkkinen, K. 1991. Outokumpu Finnmines Oy:n Vihannin kaivos. Summary: Outokumpu Finnmines Oy's Vihanti zinc mine. Vuoriteollisuus 49, 81-88.

**6.** Björklund, A., Kontio, M. & Nikkarinen, M. 1976. Vihanti: the geochemical response of bedrock and ore in the overlying till. Journal of Geochemical Exploration 5, 370-373.

**7.** Hiltunen, P. & Tuovinen, O.H. 1983. Uraanimalmien rikkihappo- ja ferrisulfaattiliuotus laboratoriomittakaavassa. Tutkimusraportti, Helsingin yliopisto, Mikrobiologian laitos. 165 p. (in Finnish)

**8.** Huhtala, T., Mäkelä, T. & Rauhamäki, E. 1978. Vihannin - Pyhäsalmen alueen sinkkimalmien vulkaanis-stratigrafinen asema. In: Laatokan - Perämeren -malmivyöhyke : Geologijaoston järjestämä symposio Otaniemessä Teknillisen korkeakoulun kemian osaston I-salissa 16.2.1978. Espoo: Vuorimiesyhdistys ry., 111-120. (in Finnish)

**9.** Iisalo, E. 1995. Vihannin karttalehden 2434 vanhan moreeniaineiston uudelleen analysointi ICP:llä, tulosten vertailu ja anomaliat. Geological Survey of Finland, Report S/41/2434/95/1. 16 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/s41\_2434\_95\_1.pdf

**10.** Iisalo, E. 2004. Geokemialliset malmiviitteet Vihannin alueella, Länsi-Suomessa. Geological Survey of Finland, Report M10.4/2004/2. 90-108 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf

**11.** Iisalo, E. 2004. Moreeni-, rapakallio- ja kallionäytteiden geokemialliset erikoispiirteet Vihannin alueella, Länsi-Suomessa. Geological Survey of Finland, Report M10.4/2004/2. 73-89 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf

**12.** Iisalo, E. 2004. Moreenin stratigrafia ja geokemia Raahe-Laatokka -vyöhykkeen luoteisosassa, Länsi-Suomessa. Geological Survey of Finland, Report M10.4/2004/2. 61-72 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf

**13.** Isokangas, P. 1954. The Vihanti zinc deposit. In: Aurola, E. (ed.) The Mines and Quarries of Finland. Geological Survey of Finland, Geoteknillisiä julkaisuja 55, 29-32. http://tupa.gtk.fi/julkaisu/geoteknillinen/gt\_s\_055\_pages\_029\_032.pdf

14. Isomäki, O.-P. 1992. Vihannin sinkkikaivoksen toiminta päättyi. Summary: Outokumpu Finnmines



Oy's Vihanti zinc mine is closed. Geologi 44, 129-130.

**15.** Kaakinen, J. 2016. Öljyllä ja raskasmetalleilla pilaantuneita maita koskevan ympäristölainsäädännön ja lupamenettelyn edistäminen kemiallisella tutkimuksella. Oulun yliopisto, Oulu.*http://jultika.oulu.fi/files/isbn9789526211589.pdf* 

**16.** Kahma, A. 1950. Yhteenveto geologisen tutkimuslaitoksen suorittamista tutkimuksista Lampinsaaren sinkkiesiintymällä Vihannissa. Geological Survey of Finland, Report M17/Vti-50/3. 9 p. (in Finnish)

**17.** Kauranne, L-M. 1979. Vihannin karttalehtialueen geokemiallisen kartoituksen tulokset. Summary: The results of the geochemical survey in the Vihanti map-sheet area. Explanation for geochemical maps, Sheet 2434. Geological Survey of Finland. 55 p. http://tupa.gtk.fi/kartta/geokemiallinen\_karttaselitys/gks\_2434\_s.pdf

**18.** Korsman, K. (ed.) & Glebovitsky, V. (ed.) 1999. Raahe-Ladoga Zone structure-lithology, metamorphism and metallogeny: a Finnish-Russian cooperation project 1996-1999. Map 2: Metamorphism of the Raahe-Ladoga Zone 1:1000000. Geological Survey of Finland.

**19.** Kousa, J., Huhma, H. & Vaasjoki, M. 2004. U-Pb -ajoitukset eräistä magmasyntyisistä kivistä Pohjois-Pohjanmaalta, Raahe-Laatokka -vyöhykkeen luoteisosasta. Geological Survey of Finland, Report M10.4/2004/2. 127-141. (in Finnish)*http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf* 

**20.** Kousa, J., Luukas, J., Mäki, T., Ekdahl, E., Pelkonen, K., Papunen, H., Isomäki, O.-P., Penttilä, V.-J. & Nurmi, P. 1997. Geology and mineral deposits of the central Ostrobothnia. Geological Survey of Finland. Guide 41, 43-67. *http://tupa.gtk.fi/julkaisu/opas/op\_041\_pages\_043\_067.pdf* 

**21.** Kuronen, U. 1988. Ajatuksia vuosina 1984-1987 Vihannin alueella suoritetuista tutkimuksista. Outokumpu Oy Exploration, Report 020/2434/UOK/88. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/020\_2434\_uok\_88.pdf

**22.** Kuusisto, E. 1991. Metalli- ja rikkimalmikaivosten ja -louhosten jätealtaiden ja jätekasojen vaikutusta ympäristöön tutkivaan hankkeeseen liittyvä esiselvitys. Geologian tutkimuskeskus, Espoo. Julkaisematon raportti. 88 s.*https://tupa.gtk.fi/raportti/arkisto/s42\_0000\_1\_1991.pdf* 

**23.** Laatio, G. 1952. Vihanti. Geological Survey of Finland, Report Dc N:o 29. 4 p. (in Finnish) *http://tupa.gtk.fi/raportti/arkisto/dc\_29.pdf* 

**24.** Lahtinen, R., Korja, A. & Nironen, M. 2001. Evolution and metallogeny if the Paleoproterozoic Svecofennian Orogen. In: Williams P.J. (ed.) 2001: A Hydrothermal Odyssey. May 17-19th, 2001, Townsville. Extended abstracts. EGRU and JCU. 110-111.

**25.** Lestinen, P. 1983. Sulphide deposits of central Finland. Outokumpu, Pyhäsalmi, Vihanti. X IGES - III SMGP Symposium, 1983. Excursion Guide. Espoo: Geological Survey of Finland. 9 p.

**26.** Loukola-Ruskeeniemi, K. 1991. Suomen proterotsooisten mustaliuskeiden uraanipitoisuudesta. 2 p. Geological Survey of Finland, Report M19/3344/-91/1/30. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m19\_3344\_91\_1\_30.pdf

**27.** Loukola-Ruskeeniemi, K. 1999. Origin of black shales and the serpentinite-associated Cu-Zn-Co ores at Outokumpu, Finland. Econ. Geol. 94, 1007-1028.



**28.** Loukola-Ruskeeniemi, K., Kuronen, U. & Arkimaa, H. 1997. Geochemical comparison of metamorphosed black shales associated with the Vihanti zinc deposit and prospects in western Finland. Geological Survey of Finland, Special Paper 23, 5-13. http://tupa.gtk.fi/julkaisu/specialpaper/sp\_023\_pages\_005\_013.pdf

**29.** Luukas, J., Kousa, J., Nikander, J. & Ruotsalainen, A. 2004. Raahe-Laatokka ¿vyöhykkeen luoteisosan kallioperä Länsi-Suomessa. Geological Survey of Finland, Report M10.4/2004/2. 6¿37. http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf

**30.** Lång, K., Gaál, G. & Starostin, V. 1984. Structural and petrophysical features, some Precambrian stratabound base metal deposits of Finland (Outokumpu, Vihanti, Riikonkoski). In: 27th International Geological Congress = 27-j mezdunarodnyh geologiceskij kongress, Moskva, 4-14 avgusta: Tesizy = Abstracts. 6, 186-187.

**31.** Meriläinen, M. 1977. Vihannin sulfidimalmiesiintymään liittyvän uraani-fosforivyöhykkeen petrografiset, geokemialliset ja rikki-isotooppigeologiset pääpiirteet. MSc thesis, University of Helsinki, Department of Geology and Mineralogy. 48 p. (in Finnish).

**32.** Mikkola, A. 1947. Lampinsaaren kiisumalmin kairasydänten tutkiminen. Geological Survey of Finland, Report M17/Vti-47/1. 7 p. (in Finnish)

**33.** Mikkola, A. 1949. Vihannista lähetetyt kansannäytteet. 2 p. Geological Survey of Finland, Report M17/Vti-49/2. (in Finnish)

**34.** Mäkelä, M., Kuronen, U. & Mäki, T. 1987. Syvämalminetsintä ja geokemia. Geologi 39, 180-184. (in Finnish)

**35.** Mäki, T., Kousa, J. & Luukas, J. 2015. The Vihanti-Pyhäsalmi VMS belt. In: Maier, W.D., Lahtinen, R. & O'Brien, H. (eds) Mineral deposits of Finland. Amsterdam: Elsevier, 507-530. http://www.sciencedirect.com/science/article/pii/B9780124104389000200

**36.** Nikander, J. & Luukas, J., Ruotsalainen, A. & Kousa, J. 2002. Kallioperä- ja malmitutkimukset Vihannin Vilmingon ja Rantsilan Pelkoperän välisellä alueella vuosina 1993-2002. Geological Survey of Finland, Report M 19/2434, 3412/2002/1/10. 71 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m19\_2434\_3412\_2002\_1\_10.pdf

**37.** Nikander, J. 2006. Vihannin Lampinsaaren kairaukset vuonna 2006 karttalehdellä 2434 05. Summary: Drillings in Lampinsaari in Vihanti in the year of 2006 on the map sheet 2434 05. Geological Survey of Finland, Report M19/2434/2006/1/10. 8 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m19\_2434\_2006\_1\_10.pdf

**38.** Nikander, J., Luukas, J. & Ruotsalainen, A. 2004. Vihannin alueen massiivisten sulfidimalmiesiintymien geologia ja malminmuodostus Raahe-Laatokka ¿vyöhykkeellä Länsi-Suomessa. Geological Survey of Finland, Report M10.4/2004/2. 38¿60. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/m10\_4\_2004\_2.pdf

**39.** Nikander, J., Luukas, J. & Ruotsalainen, A. 2005. Vihannin Lampinsaaren ympäristön ja Kuuhkamon kairaukset karttalehdellä 2434 05 vuosina 2005¿2005. Summary: Drillings in the Lampinsaari area and in Kuuhkamo in Vihanti on the map sheet 2434 05, during the years 2004¿2005. Geological Survey of Finland, Report M19/2434/2005/2/10. 14 p. http://tupa.gtk.fi/raportti/arkisto/m19\_2434\_2005\_2\_10.pdf



**40.** OECD 1999. NEA/IAEA Report, Environmental activities in uranium mining and milling. Finland p. 88-89.*http://tupa.gtk.fi/karttasovellus/mdae/references/169\_Luhti/169\_766-environmental-activities.pdf* 

**41.** Outokumpu Oy. 1992. Outokumpu Oy, internal report.

**42.** Papunen, H. (ed.) 1990. Sinkkiprojektin loppuraportti. University of Turku, Institute of Geology and Mineralogy, Publication 22. 143 p. (in Finnish)

**43.** Pelkonen, K. 1987. Hopeamineraalien esiintymisestä ja rikastettavuudesta Vihannin malmissa. Summary: Silver minerals in the Vihanti ore deposit and their behaviour in concentration process. In: ed. H. Kauppinen, R. Blomqvist, H. Laapas et al. Tuotantomineralogian seminaari 16.1.1986 TKK:n Vuoriteollisuusosastolla. Vuorimiesyhdistys Sarja B 38, 44-56.

**44.** Pohjavesialueet. Suomen ympäristökeskus. Vesi.fi-karttapalvelu. Viitattu 3.7.2023. *https://www.vesi.fi/karttapalvelu/* 

**45.** Rauhamäki, E. 1979. Vihannin kaivoksen uraani-fosforimineralisaatio. In: Parkkinen, M. (ed.) Uraaniraaka-ainesymposiumi (1979). Vuorimiesyhdistys. Sarja B 27, 65-79. (in Finnish)

**46.** Rauhamäki, E., Mäkelä, T. & Isomäki, O-P. 1980. Geology of the Vihanti mine. In: Häkli, T.A. (ed.) Precambrian Ores of Finland: Guide to Excursions 078 A+C, Part 2 (Finland). Espoo: Geological Survey of Finland, 14-24.

**47.** Rauhamäki, E., Mäkelä, T. & Isomäki, O.-P. 1978. Geology of the Vihanti mine. In: Metallogeny of the Baltic Shield, Helsinki symposium 1978, June 12-21, Finland : IGCP Project 74/1/91 "Metallogeny of the Precambrian". Excursion guide. Helsinki: The Academy of Finland, 35-56.

**48.** Rehtijärvi, P. & Lindqvist, K. 1978. Uraani ja torium eräissä uraaniesiintymien näytteissä: tiivistelmä menetelmistä ja tutkimustuloksista. Helsingin yliopisto. Geologian laitos. Tiedonanto 7. 86 p. (in Finnish)

**49.** Rehtijärvi, P. & Äikäs, O. 1976. Uraanin ja fosforin jakautuminen eräissä Suomen uraanifosforiesiintymien näytteissä. Helsingin yliopisto. Geologian laitos. Tiedonanto 2. 17 p. (in Finnish)

**50.** Rehtijärvi, P. & Äikäs, O. 1977. Fosfaatin värjäys ja autoradiografia apatiitti- ja uraanipitoisten geologisten näytteiden tutkimusmenetelmänä. Summary: Phosphate stain printing technique and autoradiography in the study of uranium- and apatite-bearing rock samples. Geologi 29 (2), 17-22.

**51.** Rehtijärvi, P. 1983. REE patterns for apatites from Proterozoic phosphatic metasediments, Finland. Bulletin of the Geological Society of Finland 55 (1), 77-82. http://tupa.gtk.fi/julkaisu/sgs\_bulletin/sgs\_bt\_055\_1\_pages\_077\_082.pdf

**52.** Rehtijärvi, P. 1984. Distributions of phosphorus, sulphur and sulphur isotopes in a strata-bound base metal deposit, Kangasjärvi, Finland. Geological Survey of Finland, Report of Investigation 65. 16 p.*http://tupa.gtk.fi/julkaisu/tutkimusraportti/tr\_065.pdf* 

**53.** Rehtijärvi, P., Äikäs, O. & Mäkelä, M. 1979. A middle Precambrian uranium- and apatite-bearing horizon associated with the Vihanti zinc ore deposit, western Finland. Economic Geology 74, 1102-1117.

54. Rouhunkoski, P. 1968. On the geology and geochemistry of the Vihanti zinc ore deposit. Bulletin



de la Commission Geologique de Finlande 236. 121 p.http://tupa.gtk.fi/julkaisu/bulletin/bt\_236.pdf

**55.** Räisänen, M. L., Beucher, A., Tornivaara, A. & Kauppila, P. 2015. Suljettujen ja hylättyjen metallikaivosalueiden nykytila ja arvio jätealueiden ympäristöriskipotentiaalista. Geologian tutkimuskeskus, arkistoraportti 46/2015, 129 s

**56.** Salli, I. 1958. Vihanti. Geological Map of Finland 1:100000. Pre-Quaternary Rocks, Sheet 2434. Geological Survey of Finland.*http://tupa.gtk.fi/kartta/kallioperakartta100/kp\_2434.pdf* 

**57.** Salli, I. 1965. Pre-Quaternary Rocks of the Pyhäjoki and Vihanti Map-Sheet areas. Geological Map of Finland 1:100000. Explanation to the Maps of Pre-Quaternary Rocks, Sheets 2432-2434. Geological Survey of Finland. 52 p.*http://tupa.gtk.fi/kartta/kallioperakartta100/kps\_2432\_2434.pdf* 

**58.** Soljanto, P., Rehtijärvi, P. & Tuovinen, O. H. 1979. Uraanin erotus kvartsiiteista ja fosfaattisista metasedimenteistä bakteeriliuotuksen avulla. University of Helsinki, Department of Microbiology. Report 18. 44 p. (in Finnish).

**59.** Sotka, P. 1981. Vihanti: Välisaaren ja Isoahon malmimineraalien koostumuksesta. Outokumpu Oy Exploration, Report 070/Vihanti/PMS/1981. 2 p. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/070\_2434\_vihanti\_pms\_1981.pdf

**60.** Tontti, M., Koistinen, E. & Seppänen, H. 1981. Vihannin Zn-Cu-malmivyöhykkeen geomatemaattinen arviointi. Summary: Geomathematical evaluation of the Vihanti Zn-Cu ore zone. Geological Survey of Finland, Report of Investigation 54. 58 p. http://tupa.gtk.fi/julkaisu/tutkimusraportti/tr\_054.pdf

**61.** Tornivaara, A., Räisänen, M. L., Kovalainen, H. & Kauppi, S. 2018. Suljettujen ja hylättyjen kaivosten kaivannaisjätealueiden jatkokartoitus (KAJAK II). Suomen Ympäristökeskuksen raportteja 12/2018 *https://helda.helsinki.fi/handle/10138/235617* 

**62.** Tuovinen, O. H., Hiltunen, P. & Vuorinen, A. 1983. Solubilization of phosphate, uranium and iron from apatite- and uranium-containing rock samples in synthetic and microbiologically produced acid leach solutions. European Journal of Applied Microbiology and Biotechnology (17), 327-333.

**63.** Törnroos, R. 1982. Sphalerite geobarometry of some metamorphosed sulphide ore deposits in Finland. Geological Survey of Finland, Bulletin 323. 42 p. http://tupa.gtk.fi/julkaisu/bulletin/bt\_323.pdf

**64.** Vaasjoki, M. & Sakko, M. 1988. The evolution of the Raahe-Ladoga zone in Finland: isotopic constraints. Geological Survey of Finland, Bulletin 343, 7-32. http://tupa.gtk.fi/julkaisu/bulletin/bt\_343\_pages\_007\_032.pdf

**65.** Vaasjoki, M. & Sakko, M.1988. The evolution of the Raahe-Ladoga zone in Finland: isotopic constraints. Geological Survey of Finland, Bulletin 343, 7-32. http://tupa.gtk.fi/julkaisu/bulletin/bt\_343\_pages\_007\_032.pdf

**66.** Vaasjoki, M. 1981. The lead isotopic compositions of some Finnish galenas. Geological Survey of Finland, Bulletin 316. 30 p.*http://tupa.gtk.fi/julkaisu/bulletin/bt\_316.pdf* 

**67.** Vaasjoki, M., Äikäs, O. & Rehtijärvi, P. 1980. The age of mid-Proterozoic phosphatic metasediments in Finland as indicated by radiometric U-Pb dates. Lithos 13, 257-262.



17.1.2024

**68.** Vaasjoki, O. 1946. Vihannin näytteiden malmimineraalikokoomus. 3 p. Geological Survey of Finland, Report M17/Vti-46/3. (in Finnish)

**69.** Weihed, P. & Eilu, P. 2005. Fennoscandian Shield - Proterozoic VMS deposits. Ore Geology Reviews 27, 324-325.

**70.** Wennervirta, H. 1968. Litogeokemiallinen tutkimus, Vihannin malmikompleksi. Outokumpu Oy Exploration, Report 061/2434 05/604/HW/68. (in Finnish) http://tupa.gtk.fi/raportti/arkisto/061\_2434\_hw\_68.pdf

**71.** Äikäs, O. 1989. Phosphate resources in early Proterozoic supracrustal rocks, Finland, with reference to the Baltic Shield. In: Notholt, A. J. G., Sheldon, R. P. & Davidson, D. F. (eds.) Phosphate deposits of the world. Vol. 2: Phosphate rock resources. Cambridge: Cambridge University Press, 429-436.