Large Hadron Collider creates 'mini Big Bang'

View of the LHC (large hadron collider) in its tunnel at CERN (European particle physics laboratory) near Geneva, Switzerland, Thursday, May 31, 2007. The LHC is a 27-kilometre-long underground ring of superconducting magnets housed in this pipe-like structure or cryostat. The cryostat is cooled by liquid helium to keep it at an operating temperature just above absolute zero. It will accelerate two counter-rotating beam of protons to an energy of 7 tera electron volts (TeV) and then bring them to collide head on. Several detectors are being built around the LHC to detect the various particles produced by the collision. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)

European Center for Nuclear Research (CERN) scientists control computer screens showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)

**ADVANCE FOR SUNDAY, JUNE 29--FILE** In this March 22, 2007 file photo, the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007, in Geneva, Switzerland. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)

A European Center for Nuclear Research (CERN) scientist controls a computer screen showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17 mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)

thumbnail: View of the LHC (large hadron collider) in its tunnel at CERN (European particle physics laboratory) near Geneva, Switzerland, Thursday, May 31, 2007. The LHC is a 27-kilometre-long underground ring of superconducting magnets housed in this pipe-like structure or cryostat. The cryostat is cooled by liquid helium to keep it at an operating temperature just above absolute zero. It will accelerate two counter-rotating beam of protons to an energy of 7 tera electron volts (TeV) and then bring them to collide head on. Several detectors are being built around the LHC to detect the various particles produced by the collision. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
thumbnail: European Center for Nuclear Research (CERN) scientists control computer screens showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)
thumbnail: **ADVANCE FOR SUNDAY, JUNE 29--FILE**  In this March 22, 2007 file photo, the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007, in Geneva, Switzerland.  Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)
thumbnail: A European Center for Nuclear Research (CERN) scientist controls a computer screen showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17 mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)

The giant machine probing the nature of matter, the Large Hadron Collider, has successfully created mini versions of the "Big Bang" which gave birth to the universe almost 14 billion years ago.

British scientists working at the LHC in Geneva, Switzerland were celebrating the achievement which opens up a new era in particle physics research.

The "Mini Bangs" were produced by smashing together lead ions - atoms of lead stripped of their electrons - together at enormous energies. The collisions generated temperatures a million times hotter than the centre of the Sun, reproducing conditions not seen since just after the Big Bang.

Dr David Evans, a member of the UK team from the University of Birmingham, said: "We are thrilled with the achievement. The collisions generated mini Big Bangs and the highest temperatures and densities ever achieved in an experiment.

"This process took place in a safe, controlled environment generating incredibly hot and dense sub-atomic fireballs with temperatures of over 10 trillion degrees, a million times hotter than the centre of the Sun. At these temperatures even protons and neutrons, which make up the nuclei of atoms, melt resulting in a hot dense soup of quarks and gluons known as a quark-gluon plasma."

Powerful magnets spun the lead ions round miles of underground tunnels at near the speed of light. Flying in opposite directions, the particles were focused into a narrow beam and forced to collide inside the massive Alice "detector".

Scientists hope the quark-gluon plasma will allow them to learn more about the Strong Force, one of the four fundamental forces of nature.

"The Strong Force not only binds the nuclei of atoms together but is responsible for 98% of their mass," said Dr Evans. "I now look forward to studying a tiny piece of what the universe was made of just a millionth of a second after the Big Bang."

The Alice experiment is just one part of the LHC, whose circular beam tunnel runs for 27 kilometres (16.7 miles) 100 metres (328ft) below the French/Swiss border. Four detectors sit in huge chambers at various points in the tunnel. Alice is 16 metres (52.5ft) high, 26 metres (85.3ft) across and weighs around 10,000 tons.

The Alice experiment involves around 1,000 physicists and engineers from 100 institutes in 30 countries. Britain's contribution includes eight physicists and engineers and seven PhD students from the University of Birmingham. During the lead nuclei collisions Alice will download data at a rate of 1.2 gigabytes per second, producing the equivalent of more than three million CDs-worth of recorded information.